Grapple fixture

Last updated
Black is compatible with the SSRMS, SRMS and JEMRMS. Blue is compatible with SRMS and JEMRMS. Red is compatible with SSRMS. North American grapple fixture drawing.svg
Black is compatible with the SSRMS, SRMS and JEMRMS. Blue is compatible with SRMS and JEMRMS. Red is compatible with SSRMS.

Grapple fixtures are used on spacecraft or other objects to provide a secure connection for a robotic arm.

Contents

North America

The fixtures allowed the Space Shuttle's Canadarm (also known as the Shuttle Remote Manipulator System, or SRMS) to safely grapple large objects (e.g. ISS components, or satellites e.g. HST).

They currently do the same for the International Space Station's Space Station Remote Manipulator System (SSRMS) (also known as Canadarm2) and the Japanese Experiment Module Remote Manipulator System (JEMRMS). [1]

The grapple fixtures are flat in appearance, with a central grapple pin topped with a sphere which the snares in the end of the arms latch on to. They use three "ramps" that help guide the robotic arm correctly onto the grapple fixture. [2]

Development

The North American grapple fixture was developed at Spar Aerospace in the 1970s. Its invention is credited to Frank Mee, who also invented the Canadarm end effector for the Space Shuttle. [3] The Grapple Fixture design was further refined by Barrie Teb. [3]

Variants

Flight-Releasable Grapple Fixture

Flight-Releasable Grapple Fixture FRGF on Cupola.jpg
Flight-Releasable Grapple Fixture

The Flight-Releasable Grapple Fixture (FRGF) is the simplest variation of the North American grapple fixture, it allows only for grappling and does not have any electrical connectors. [4] Its use began early in the Space Shuttle program and was developed from the Flight Standard Grapple Fixture (FSGF) by allowing the Grapple Shaft to be installed during extravehicular activity (EVA). [5]

Unpiloted ships like the SpaceX Dragon, Orbital ATK Cygnus and Japanese H-II Transfer Vehicle include a standard FRGF which is used by the Canadarm2 to grapple the capsule on approach to the International Space Station for berthing. [6] The fixture can have a maximum payload rating of 65,000 pounds or 30,000 kg. [7] An orbital replacement unit may also have a grapple fixture.

Latchable Grapple Fixture

Latchable Grapple Fixture Latchable Grapple Fixture.jpg
Latchable Grapple Fixture

The Latchable Grapple Fixture (LGF) allows for grappling and latching, intended to be used for longer‐term stowage on the Payload Orbital replacement unit Accommodation (POA) (greater than 3 weeks). [4] It does not have any electrical connectors. [4]

Electrical Flight Grapple Fixture and Electro Mechanical Grapple Fixture

Electrical Flight Grapple Fixture used on the Space Shuttle's boom Electrical Flight Grapple Fixture.jpg
Electrical Flight Grapple Fixture used on the Space Shuttle's boom
Electro Mechanical Grapple Fixture used on Kibo's Small Fine Arm Electrical Flight Grapple Fixture on the Small Fine Arm.jpg
Electro Mechanical Grapple Fixture used on Kibo's Small Fine Arm

The Electrical Flight Grapple Fixture (EFGF) allows for grappling. [7] It has a single electrical connection for data, power, [7] and video from cameras on the manipulators. [8] The electrical connection is compatible with the Shuttle Remote Manipulator System (also known as Canadarm1).

Kibo (ISS module) Remote Manipulator System (Japanese Experiment Module Remote Manipulator System) uses a similar[ clarification needed ] grapple fixture, called Electro Mechanical Grapple Fixture (EMGF).[ citation needed ]

Power and Video Grapple Fixture

Power and Video Grapple Fixture Power Video Grapple Fixture.jpg
Power and Video Grapple Fixture

The Power and Video Grapple Fixture (PVGF) allows for grappling and latching. [4] It has electrical connectors for data, video, and power. [4] The electrical connections are compatible with the Space Station Remote Manipulator System (also known as Canadarm2).

Power and Data Grapple Fixture

Power and Data Grapple Fixture Power Data Grapple Fixture on station.jpg
Power and Data Grapple Fixture

The Power Data Grapple Fixture (PDGF) allows for grappling and latching. [4] It has electrical connectors for data, video, and power; it is also the only North American grapple fixture that is replaceable on-orbit. [4] The electrical connections are compatible with the Space Station Remote Manipulator System (also known as Canadarm2).

It is used on the International Space Station (ISS). PDGFs can be "grappled" by the Canadarm2 robotic arm, in order to allow the arm to manipulate and power a grappled object, or be commanded by operators based inside the ISS. PDGFs located around much of the station provide connections for the arm. They have four rectangular connectors to transfer data, video and electrical power. During the penultimate Space Shuttle flight a PDGF was installed on the Zarya module to support Canadarm2 operations based from the Russian segment. [9]

Satellites with NASA grapple fixtures

European grapple fixture

A grapple fixture used by the European Robotic Arm, located on the Rassvet Mini-Research Module 1 (MRM1) of the International Space Station. This fixture, along with others allows for the European Robotic Arm to grapple and move around the station. European Robotic Arm Grapple Fixture located on the Rassvet Module, June 2010.png
A grapple fixture used by the European Robotic Arm, located on the Rassvet Mini-Research Module 1 (MRM1) of the International Space Station. This fixture, along with others allows for the European Robotic Arm to grapple and move around the station.

Although the European Robotic Arm uses grapples to relocate in a similar fashion to Canadarm2, the grapple fixtures are not compatible with each other. This means the European arm can only work on the Russian segments of the station. [11]

Related Research Articles

Space Shuttle <i>Endeavour</i> Space Shuttle orbiter

Space Shuttle Endeavour is a retired orbiter from NASA's Space Shuttle program and the fifth and final operational Shuttle built. It embarked on its first mission, STS-49, in May 1992 and its 25th and final mission, STS-134, in May 2011. STS-134 was expected to be the final mission of the Space Shuttle program, but with the authorization of STS-135 by the United States Congress, Atlantis became the last shuttle to fly.

<i>Kibō</i> (ISS module) Japanese ISS module, used on ISS press conferences

The Japanese Experiment Module (JEM), nicknamed Kibō, is a Japanese science module for the International Space Station (ISS) developed by JAXA. It is the largest single ISS module, and is attached to the Harmony module. The first two pieces of the module were launched on Space Shuttle missions STS-123 and STS-124. The third and final components were launched on STS-127.

<span class="mw-page-title-main">Mobile Servicing System</span> Robotic system on board the International Space Station

The Mobile Servicing System (MSS), is a robotic system on board the International Space Station (ISS). Launched to the ISS in 2001, it plays a key role in station assembly and maintenance; it moves equipment and supplies around the station, supports astronauts working in space, and services instruments and other payloads attached to the ISS and is used for external maintenance. Astronauts receive specialized training to enable them to perform these functions with the various systems of the MSS.

<i>Cupola</i> (ISS module)

The Cupola is an ESA-built observatory module of the International Space Station (ISS). Its name derives from the Italian word cupola, which means "dome". Its seven windows are used to conduct experiments, dockings and observations of Earth. It was launched aboard Space Shuttle Endeavour's mission STS-130 on 8 February 2010, and attached to the Tranquility module. With the Cupola attached, ISS assembly reached 85 percent completion. The Cupola's central window has a diameter of 80 cm (31 in).

<span class="mw-page-title-main">Canadarm</span> Robotic arm used to manoeuvre and capture mission payloads on the Space Shuttle

Canadarm or Canadarm1 is a series of robotic arms that were used on the Space Shuttle orbiters to deploy, manoeuvre, and capture payloads. After the Space Shuttle Columbia disaster, the Canadarm was always paired with the Orbiter Boom Sensor System (OBSS), which was used to inspect the exterior of the shuttle for damage to the thermal protection system.

<span class="mw-page-title-main">Dextre</span> Robotic Arm

Dextre, also known as the Special Purpose Dexterous Manipulator (SPDM), is a two armed robot, or telemanipulator, which is part of the Mobile Servicing System on the International Space Station (ISS), and does repairs that would otherwise require astronauts to do spacewalks. It was launched on March 11th, 2008 on the mission STS-123.

<span class="mw-page-title-main">European Robotic Arm</span> Robotic arm installed on the ISS Russian Segment

The European Robotic Arm (ERA) is a robotic arm that is attached the Russian Orbital Segment (ROS) of the International Space Station. Launched to the ISS in July 2021; it is the first robotic arm that is able to work on the Russian Segment of the station. The arm supplements the two Russian Strela cargo cranes that were originally installed on the Pirs module, but were later moved to the docking compartment Poisk and Zarya module.

<span class="mw-page-title-main">Orbiter Boom Sensor System</span>

The Orbiter Boom Sensor System (OBSS) was a 50-foot boom carried on board NASA's Space Shuttles. The boom was grappled by the Canadarm and served as an extension of the arm, doubling its length to a combined total of 100 feet. At the far end of the boom was an instrumentation package of cameras and lasers used to scan the leading edges of the wings, the nose cap, and the crew compartment after each lift-off and before each landing. If flight engineers suspected potential damage to other areas, as evidenced in imagery captured during lift-off or the rendezvous pitch maneuver, then additional regions could be scanned.

<span class="mw-page-title-main">STS-123</span> 2008 American crewed spaceflight to the ISS

STS-123 was a Space Shuttle mission to the International Space Station (ISS) which was flown by Space Shuttle Endeavour. STS-123 was the 1J/A ISS assembly mission. The original launch target date was 14 February 2008 but after the delay of STS-122, the shuttle was launched on 11 March 2008. It was the twenty-fifth shuttle mission to visit the ISS, and delivered the first module of the Japanese laboratory, Japanese Experiment Module (Kibō), and the Canadian Special Purpose Dexterous Manipulator, (SPDM) Dextre robotics system to the station. The mission duration was 15 days and 18 hours, and it was the first mission to fully utilize the Station-to-Shuttle Power Transfer System (SSPTS), allowing space station power to augment the shuttle power systems. The mission set a record for a shuttle's longest stay at the ISS.

<span class="mw-page-title-main">STS-131</span> 2010 American crewed spaceflight to the ISS

STS-131 was a NASA Space Shuttle mission to the International Space Station (ISS). Space ShuttleDiscovery launched on 5 April 2010 at 6:21 am from LC-39A, and landed at 9:08 am on 20 April 2010 on runway 33 at the Kennedy Space Center's Shuttle Landing Facility. The mission marked the longest flight for Space Shuttle Discovery.

SPAR Aerospace was a Canadian aerospace company. It produced equipment for the Canadian Space Agency to be used in cooperation with NASA's Space Shuttle program, most notably the Canadarm, a remote manipulator system.

<span class="mw-page-title-main">Pressurized Mating Adapter</span> Spacecraft docking adapter

The Pressurized Mating Adapter (PMA) is a class of spacecraft adapters that convert the Common Berthing Mechanism (CBM) used on the US Orbital Segment to APAS-95 docking ports. There are three PMAs located on the International Space Station (ISS); the first two were launched with the Unity connecting module in 1998 aboard STS-88, and the third was launched in 2000 aboard STS-92. All three of the PMAs are now used to permanently connect parts of the ISS, so they are no longer available as docking ports for visiting spacecraft.

<i>Leonardo</i> (ISS module) Italian module of the International Space Station

The Leonardo Permanent Multipurpose Module (PMM) is a module of the International Space Station. It was flown into space aboard the Space Shuttle Discovery on STS-133 on 24 February 2011 and installed on 1 March. Leonardo is primarily used for storage of spares, supplies and waste on the ISS, which was until then stored in many different places within the space station. It is also the personal hygiene area for the astronauts who live in the US Orbital Segment. The Leonardo PMM was a Multi-Purpose Logistics Module (MPLM) before 2011, then was modified into its current configuration. It was formerly one of two MPLM used for bringing cargo to and from the ISS with the Space Shuttle. The module was named for Italian polymath Leonardo da Vinci.

<span class="mw-page-title-main">US Orbital Segment</span> US components of the International Space Station

The US Orbital Segment (USOS) is the name given to the components of the International Space Station (ISS) constructed and operated by the United States National Aeronautics and Space Administration (NASA), European Space Agency (ESA), Canadian Space Agency (CSA) and Japan Aerospace Exploration Agency (JAXA). The segment currently consists of eleven pressurized components and various external elements, all of which were delivered by the Space Shuttle.

<span class="mw-page-title-main">Strela (crane)</span> Russian crane on the International Space Station

Strela is a class of four Russian built cargo cranes used during EVAs to move cosmonauts and components around the exterior of the Soviet/Russian space station Mir and the Russian Orbital Segment of the International Space Station.

<span class="mw-page-title-main">Docking and berthing of spacecraft</span> Joining of two or more space vehicles

Docking and berthing of spacecraft is the joining of two space vehicles. This connection can be temporary, or partially permanent such as for space station modules.

<span class="mw-page-title-main">Integrated cargo carrier</span> Space Shuttle module

Integrated Cargo Carrier (ICC) was a project, started in 1997 by the companies Spacehab and Airbus DS Space Systems, to develop a family of flight proven and certified cross-the-bay cargo carriers designed to fly inside the Space Shuttle cargo bay, installed either horizontally or vertically, and able to carry up to 8000 lbs. of unpressurized cargo into orbit. Airbus owns the ICC fleet of carriers.

<span class="mw-page-title-main">Orbital replacement unit</span>

Orbital replacement units (ORUs) are key elements of the International Space Station that can be readily replaced when the unit either passes its design life or fails. ORUs are parts of the main systems and subsystems of the external elements of the ISS, none are intended to be installed inside the pressurised modules. Examples of ORUs are: pumps, storage tanks, controller boxes, antennas, and battery units. Such units are replaced either by astronauts during EVA or by the Dextre (SPDM) robotic arm. All are stored on the three external stowage platforms (ESPs) or the four ExPRESS Logistics Carriers (ELCs) mounted on the Integrated Truss Structure (ITS).

<span class="mw-page-title-main">Altius Space Machines</span> American aerospace company

Altius Space Machines is a subsidiary company of Voyager Space Holdings, based in Broomfield, CO dedicated to engineering the future in Aerospace.

<span class="mw-page-title-main">Manufacturing of the International Space Station</span> Fabrication of the ISS elements

The project to create the International Space Station required the utilization and/or construction of new and existing manufacturing facilities around the world, mostly in the United States and Europe. The agencies overseeing the manufacturing involved NASA, Roscosmos, the European Space Agency, JAXA, and the Canadian Space Agency. Hundreds of contractors working for the five space agencies were assigned the task of fabricating the modules, trusses, experiments and other hardware elements for the station.

References

  1. "JAXA HTV-1 Mission Press Kit" (PDF). JAXA. p. 19. Retrieved November 13, 2022.
  2. CanadaArm2 End Effector Archived 2012-10-05 at the Wayback Machine
  3. 1 2 Dotto, Lydia (1992). A Heritage of Excellence: 25 years at Spar Aerospace Limited. David Steel. Canada: Spar Aerospace Limited. pp. 42–43. ISBN   0-9696618-0-0.
  4. 1 2 3 4 5 6 7 Callen, Phillip (June 2014). "Robotic Transfer and Interfaces for External ISS Payloads" (PDF). NASA. Retrieved 23 November 2015.
  5. Savi S. Sachdev; Brian R. Fuller (1983). "The Shuttle Remote Manipulator System and Its Use In Orbital Operations". Spar Aerospace. Archived from the original on 2015-11-23. Retrieved 23 November 2015.
  6. "Space station catches Dragon by the tail". WRAL News. Retrieved November 13, 2022.
  7. 1 2 3 Progress in Astronautics and Aeronautics V.161: Teleoperation and Robotics in Space. American Institute of Aeronautics and Astronautics. 1994. p. 460. ISBN   9781600864148.
  8. "Canadarm". WorldSpaceFlight.com. Retrieved 2015-12-05.
  9. "STS-134 Press Kit" (PDF). NASA. Retrieved November 13, 2022.
  10. "LDEF structure". Archived from the original on 2016-04-22. Retrieved November 13, 2022.
  11. "The European Robotic Arm: A High-performance Mechanism Finally on Its Way to Space". 42nd Aerospace Mechanism Symposium. May 2014.
  12. "European Robotic Arm arrives in Baikonur". Twitter. Retrieved 2020-06-03.
  13. "Liftoff! Multipurpose Laboratory Module "Nauka" Launches to Space Station". blogs.nasa.gov. NASA. Archived from the original on 21 July 2021. Retrieved 2021-07-21.PD-icon.svg This article incorporates text from this source, which is in the public domain .