Grass tetany

Last updated
Grass tetany
Other namesHypomagnesemic tetany, grass staggers, winter tetany
Vatche tetaneye.jpg
Cow grazing on rapidly grown pasture with tetany of the neck suggesting grass tetany
Specialty Veterinary medicine

Grass tetany also called the staggers , is a metabolic disease involving magnesium deficiency, which can occur in such ruminant livestock as beef cattle, dairy cattle and sheep, [1] usually after grazing on pastures of rapidly growing grass, especially in early spring. Despite the name, it is unrelated to tetanus.

Contents

Symptoms and cause

Progressive symptoms may include grazing away from the herd, irritability, muscle twitching, staring, incoordination, staggering, collapse, thrashing, head thrown back, and coma, followed by death. However, clinical signs are not always evident before the animal is found dead. [2]

The condition results from hypomagnesemia (low magnesium concentration in blood) which may reflect low magnesium intake, low magnesium absorption, unusually low retention of magnesium, or a combination of these. Commonly, apparent symptoms develop only when hypomagnesemia is accompanied by hypocalcemia (blood Ca below 8 mg/dL). [3]

Low magnesium intake by grazing ruminants may occur especially with some grass species early in the growing season, due to seasonally low magnesium concentrations in forage dry matter. [4] Some conserved forages are also low in magnesium and may be conducive to hypomagnesemia. [5]

High potassium intake relative to calcium and magnesium intake may induce hypomagnesemia. A K/(Ca+Mg) charge ratio exceeding 2.2 in forages has been commonly considered a risk factor for grass tetany. Potassium fertilizer application to increase forage production may contribute to an increased K/(Ca+Mg) ratio in forage plants, not only by adding potassium to soil, but also by displacing soil-adsorbed calcium and magnesium by ion exchange, contributing to increased susceptibility of calcium and magnesium to leaching loss from the root zone during rainy seasons. In ruminants, high potassium intake results in decreased absorption of magnesium from the digestive tract. [6] [7]

Trans-aconitate, which accumulates in some grasses, can be a risk factor for hypomagnesemia in grazing ruminants. (Tetany has been induced in cattle by administration of trans-aconitate and KCl, where the amount of KCl used was, by itself, insufficient to induce tetany. [8] ) Relatively high levels of trans-aconitate have been found in several forage species on rangeland sites conducive to hypomagnesemia. [9] Although at least one rumen organism converts trans-aconitate to acetate, [10] other rumen organisms convert trans-aconitate to tricarballylate, which complexes with magnesium. [11] Using rats as an animal model, oral administration of tricarballylate has been shown to reduce an animal's magnesium retention. [12] Potassium fertilizer application results in increased concentration of aconitic acid in some grass species. [13]

Prevention

Magnesium supplements are used to prevent the disease when ruminants, for obvious economic reasons, must have access to dangerous pastures.

Treatment

The affected animal should be left in the pasture, and not forced to come back to stall because excitation can darken the prognosis, even after adequate treatment. [14]

Intravenous mixed calcium and magnesium injection are used. Subcutaneous injection of magnesium sulfate heptahydrate (200 ml of 50% solution) is also recommended. [3]

Epidemiology

In Northern Europe, the disease occurs after winter housing. But in Australia and New Zealand, where the cows are not housed, the disease occurs in similar conditions, when the animal enters lush, grass-dominant pastures. [15] In North America, grass tetany occurs most commonly when range stock are moved onto lush early pasture or when housed stock are turned out onto such pasture in the spring. A second high-risk period may occur in the fall. Although cereal grasses (e.g. winter wheat) and crested wheatgrass may be especially conducive to grass tetany, the problem can also occur with several other grass species. "Winter tetany" may occur with some silages, [3] low-magnesium grass hays, or corn stover. [16]

Related Research Articles

<span class="mw-page-title-main">Kidney stone disease</span> Formation of mineral stones in the urinary tract

Kidney stone disease, also known as renal calculus disease, nephrolithiasis or urolithiasis, is a crystallopathy where a solid piece of material develops in the urinary tract. Renal calculi typically form in the kidney and leave the body in the urine stream. A small calculus may pass without causing symptoms. If a stone grows to more than 5 millimeters, it can cause blockage of the ureter, resulting in sharp and severe pain in the lower back that often radiates downward to the groin. A calculus may also result in blood in the urine, vomiting, or painful urination. About half of people who have had a renal calculus are likely to have another within ten years.

<span class="mw-page-title-main">Ruminant</span> Hoofed herbivorous grazing or browsing mammals

Ruminants are herbivorous grazing or browsing artiodactyls belonging to the suborder Ruminantia that are able to acquire nutrients from plant-based food by fermenting it in a specialized stomach prior to digestion, principally through microbial actions. The process, which takes place in the front part of the digestive system and therefore is called foregut fermentation, typically requires the fermented ingesta to be regurgitated and chewed again. The process of rechewing the cud to further break down plant matter and stimulate digestion is called rumination. The word "ruminant" comes from the Latin ruminare, which means "to chew over again".

<span class="mw-page-title-main">Lactic acidosis</span> Metabolic medical condition

Lactic Acidosis refers to the process leading to the production of lactate by anaerobic metabolism. It increases hydrogen ion concentration tending to the state of acidemia or low pH. The result can be detected with high levels of lactate and low levels of bicarbonate. This is usually considered the result of illness but also results from strenuous exercise. The effect on pH is moderated by the presence of respiratory compensation.

<span class="mw-page-title-main">Magnesium in biology</span> Use of Magnesium by organisms

Magnesium is an essential element in biological systems. Magnesium occurs typically as the Mg2+ ion. It is an essential mineral nutrient (i.e., element) for life and is present in every cell type in every organism. For example, adenosine triphosphate (ATP), the main source of energy in cells, must bind to a magnesium ion in order to be biologically active. What is called ATP is often actually Mg-ATP. As such, magnesium plays a role in the stability of all polyphosphate compounds in the cells, including those associated with the synthesis of DNA and RNA.

<span class="mw-page-title-main">Grazing</span> Feeding livestock on forage

In agriculture, grazing is a method of animal husbandry whereby domestic livestock are allowed outdoors to free range and consume wild vegetations in order to convert the otherwise indigestible cellulose within grass and other forages into meat, milk, wool and other animal products, often on land that is unsuitable for arable farming.

<span class="mw-page-title-main">Electrolyte imbalance</span> Abnormality in the concentration of electrolytes in the body

Electrolyte imbalance, or water-electrolyte imbalance, is an abnormality in the concentration of electrolytes in the body. Electrolytes play a vital role in maintaining homeostasis in the body. They help to regulate heart and neurological function, fluid balance, oxygen delivery, acid–base balance and much more. Electrolyte imbalances can develop by consuming too little or too much electrolyte as well as excreting too little or too much electrolyte. Examples of electrolytes include calcium, chloride, magnesium, phosphate, potassium, and sodium.

Cud is a portion of food that returns from a ruminant's stomach to the mouth to be chewed for the second time. More precisely, it is a bolus of semi-degraded food regurgitated from the reticulorumen of a ruminant. Cud is produced during the physical digestive process of rumination.

<span class="mw-page-title-main">Hypophosphatemia</span> Lack of phosphate in the blood

Hypophosphatemia is an electrolyte disorder in which there is a low level of phosphate in the blood. Symptoms may include weakness, trouble breathing, and loss of appetite. Complications may include seizures, coma, rhabdomyolysis, or softening of the bones.

There are different systems of feeding cattle in animal husbandry. For pastured animals, grass is usually the forage that composes the majority of their diet. In turn, this grass-fed approach is known for producing meat with distinct flavor profiles. Cattle reared in feedlots are fed hay supplemented with grain, soy and other ingredients to increase the energy density of the feed. The debate is whether cattle should be raised on fodder primarily composed of grass or a concentrate. The issue is complicated by the political interests and confusion between labels such as "free range", "organic", or "natural". Cattle raised on a primarily foraged diet are termed grass-fed or pasture-raised; for example meat or milk may be called grass-fed beef or pasture-raised dairy. The term "pasture-raised" can lead to confusion with the term "free range", which does not describe exactly what the animals eat.

Magnesium deficiency is an electrolyte disturbance in which there is a low level of magnesium in the body. Symptoms include tremor, poor coordination, muscle spasms, loss of appetite, personality changes, and nystagmus. Complications may include seizures or cardiac arrest such as from torsade de pointes. Those with low magnesium often have low potassium.

The rumen, also known as a paunch, is the largest stomach compartment in ruminants and the larger part of the reticulorumen, which is the first chamber in the alimentary canal of ruminant animals. The rumen's microbial favoring environment allows it to serve as the primary site for microbial fermentation of ingested feed. The smaller part of the reticulorumen is the reticulum, which is fully continuous with the rumen, but differs from it with regard to the texture of its lining. It covers approximately 80% of total ruminant stomach portion

<span class="mw-page-title-main">Omasum</span> Third stomach compartment in ruminents

The omasum, also known as the bible, the fardel, the manyplies and the psalterium, is the third compartment of the stomach in ruminants. The omasum comes after the rumen and reticulum and before the abomasum. Different ruminants have different omasum structures and function based on the food that they eat and how they developed through evolution.

<span class="mw-page-title-main">Bladder stone (animal)</span> Common occurrence in animals

Bladder stones or uroliths are a common occurrence in animals, especially in domestic animals such as dogs and cats. Occurrence in other species, including tortoises, has been reported as well. The stones form in the urinary bladder in varying size and numbers secondary to infection, dietary influences, and genetics. Stones can form in any part of the urinary tract in dogs and cats, but unlike in humans, stones of the kidney are less common and do not often cause significant disease, although they can contribute to pyelonephritis and chronic kidney disease. Types of stones include struvite, calcium oxalate, urate, cystine, calcium phosphate, and silicate. Struvite and calcium oxalate stones are by far the most common. Bladder stones are not the same as bladder crystals but if the crystals coalesce unchecked in the bladder they can become stones.

<span class="mw-page-title-main">Calcium gluconate</span> Chemical compound

Calcium gluconate is the calcium salt of gluconic acid and is used as a mineral supplement and medication. As a medication it is used by injection into a vein to treat low blood calcium, high blood potassium, and magnesium toxicity. Supplementation is generally only required when there is not enough calcium in the diet. Supplementation may be done to treat or prevent osteoporosis or rickets. It can also be taken by mouth but is not recommended for injection into a muscle.

Fog fever is a refeeding syndrome in cattle, clinically named acute bovine pulmonary emphysema and edema (ABPEE) and bovine atypical interstitial pneumonia. This veterinary disease in adult cattle follows an abrupt move from feedlot to 'foggage pasture'. Clinical signs begin within 1 to 14 days and death may follow within 2 to 4 days. The condition can affect up to 50% of the herd, and around 30% of affected cattle may die as a result. This metabolic nutritional-respiratory disturbance has also been reported in other ruminants and on a wide variety of grasses, alfalfa, rape, kale, and turnip tops.

<span class="mw-page-title-main">Tetany</span> Medical condition, exhibiting involuntary contraction of muscles

Tetany or tetanic seizure is a medical sign consisting of the involuntary contraction of muscles, which may be caused by disorders that increase the action potential frequency of muscle cells or of the nerves that innervate them.

Magnesium aspartate is a magnesium salt of aspartic acid. It is used as a mineral supplement, and as an ingredient in manufacturing of cosmetics and household products.

Selenium deficiency occurs when an organism lacks the required levels of selenium, a critical nutrient in many species. Deficiency, although relatively rare in healthy well-nourished individuals, can have significant negative results, affecting the health of the heart and the nervous system; contributing to depression, anxiety, and dementia; and interfering with reproduction and gestation.

<span class="mw-page-title-main">Base-cation saturation ratio</span>

Base-cation saturation ratio (BCSR) is a method of interpreting soil test results that is widely used in sustainable agriculture, supported by the National Sustainable Agriculture Information Service (ATTRA) and claimed to be successfully in use on over a million acres (4,000 km2) of farmland worldwide. The traditional method, as used by most university laboratories, is known variously as the 'sufficiency level', sufficiency level of available nutrients (SLAN), or Index(UK) system. The sufficiency level system is concerned only with keeping plant-available nutrient levels within a well studied range, making sure there is neither a deficiency nor an excess. In the BCSR system, soil cations are balanced according to varying ratios often stated as giving 'ideal' or 'balanced' soil. These ratios can be between individual cations, such as the calcium to magnesium ratio, or they may be expressed as a percentage saturation of the cation exchange capacity (CEC) of the soil. Most 'ideal soil' theories stress both approaches.

Urochloa eminii, commonly known as Congo grass, is a species of forage crop in the family Poaceae that is grown throughout the humid tropics. With fast growth at the beginning of the wet season due to strong seedling vigour, ease of establishment, good seed production and yield and the ability to suppress weeds it has the ability to become developed into the most important forage crop planted in the tropics. With the aid of genomic tools to research the genotype and gain more information there is the ability to increase breeding programs which are currently rather limited.

References

  1. Mayland, H. F. 1988. Grass tetany. In: Church, D. C. (ed.). The ruminant animal: digestive physiology and nutrition. Prentice-Hall, Englewood Cliffs, N. J. pp. 511-523.
  2. Grass tetany. Kansas State Univ. Research and Extension, Forage Facts series. http://www.ksre.ksu.edu/forage/pubs/97notebook/fora15.pdf Archived 2014-07-14 at the Wayback Machine
  3. 1 2 3 Kahn, M. A. (ed.) 2005. Merck veterinary manual. 9th Ed. Merck & Co., Inc., Whitehouse Station.
  4. Rendig, V. V. and D. L. Grunes (eds.) 1979. Grass tetany. ASA Spec. Publ. 35, Am. Soc. Agron., Madison, Wisc. 175 pp.
  5. Mehren, M. Winter tetany and grass tetany http://www.oregonfeed.org/mehren_art_0205.htm Archived 2014-07-14 at the Wayback Machine
  6. Wylie, M. J., J. P. Fontenot and L. W. Greene. 1985. Absorption of magnesium and other macrominerals in sheep infused with potassium in different parts of the digestive tract. J. Anim. Sci. 61: 1219–1229
  7. Schonewille, J. T., A. T. Van't Klooster, H. Wouterse and A. C. Beynen. 1999. Effects of intrinsic potassium in artificially dried grass and supplemental potassium bicarbonate on apparent magnesium absorption in dry cows. J. Dairy Sci. 82: 1824–1830.
  8. Bohman, V. R., A. L. Lesperance, G. D. Harding and D. L. Grunes. 1969. Induction of experimental tetany in cattle. J. Anim. Sci. 29: 99-102.
  9. Stout, P.R., J. Brownell and R. J. Burau. 1967. Occurrences of trans-aconitate in range forage species. Agron. J. 59: 21-24.
  10. Cook, G. M., J. E. Wells and J. B. Russell 1994. Ability of Acidaminococcus fermentans to oxidize trans-aconitate and decrease the accumulation of tricarballylate, a toxic end product of ruminal fermentation. Appl. Env. Microbiol. 60: 2533–2537.
  11. Russell, J. B. 1985. Enrichment and isolation of rumen bacteria that reduce trans-aconitic acid to tricarballylic acid. Appl. Env. Microbiol. 49: 120-126.
  12. Schwartz, R., M. Topley and J. B. Russell. 1988. Effect of tricarballylic acid, a nonmetabolizable rumen fermentation product of trans-aconitic acid, on Mg, Ca and Zn utilization of rats. J. Nutr. 118: 183-188.
  13. Grunes, D. L., J. W. Huang, F. W. Smith, P. K. Joo and D. A. Hewes. 1992. Potassium effects on minerals and organic acids in three cool-season grasses. J. Plant Nutr. 15: 1007–1025.
  14. Gustav Rosenberger (1978). Krankheiten des Rindes (2nd ed.). Berlin: Verlag Paul Parey. pp. 1024–1037 (Weidetetanie). ISBN   3-489-61716-9.
  15. D.C. Blood; J.A. Henderson; O.M. Radostits (1979). Veterinary Medicine (5th ed.). London: Baillière Tindall. pp. 841–847 (Lactation Tetany). ISBN   0-7020-0718-8.
  16. Allison, C. 2003. Controlling grass tetany in livestock. New Mexico State Univ. Coop. Ext. Serv. Guide B-809. http://aces.nmsu.edu/pubs/_b/B-809.pdf