Gravitational biology

Last updated

Gravitational biology is the study of the effects gravity has on living organisms. Throughout the history of the Earth life has evolved to survive changing conditions, such as changes in the climate and habitat. However, one constant factor in evolution since life first began on Earth is the force of gravity. As a consequence, all biological processes are accustomed to the ever-present force of gravity and even small variations in this force can have significant impact on the health and function and the system of organisms. [1]

Contents

Gravity and life on Earth

The force of gravity on the surface of the Earth, normally denoted g, has remained constant in both direction and magnitude since the formation of the planet.[ citation needed ] As a result, both plant and animal life have evolved to rely upon and cope with it in various ways. For example, humans employ internal models in motor planning that account for the effects of gravity on gross and fine motor skills. [2]

Plant use of gravity

Plant tropisms are directional movements of a plant with respect to a directional stimulus. One such tropism is gravitropism, or the growth or movement of a plant with respect to gravity. Plant roots grow towards the pull of gravity and away from sunlight, and shoots and stems grow against the pull of gravity and towards sunlight.

Animal struggles with gravity

Gravity has had an effect on the development of animal life since the first single-celled organism. The size of single biological cells is inversely proportional to the strength of the gravitational field exerted on the cell. That is, in stronger gravitational fields the size of cells decreases, and in weaker gravitational fields the size of cells increases. Gravity is thus a limiting factor in the growth of individual cells.

Cells which were naturally larger than the size that gravity alone would allow for had to develop means to protect against internal sedimentation. Several of these methods are based upon protoplasmic motion, thin and elongated shape of the cell body, increased cytoplasmic viscosity, and a reduced range of specific gravity of cell components relative to the ground-plasma. [3]

The effects of gravity on multicellular organisms is considerably more drastic. During the period when animals first evolved to survive on land some method of directed locomotion and thus a form of inner skeleton or outer skeleton would have been required to cope with the increase in the apparent force of gravity due to the weakened upward force of buoyancy. Prior to this point, most lifeforms were small and had a worm- or jellyfish-like appearance, and without this evolutionary step would not have been able to maintain their form or move on land.

In larger terrestrial vertebrates gravitational forces influence musculoskeletal systems, fluid distribution, and hydrodynamics of the circulation.

Gravity and life elsewhere

Every day the realization of space habitation becomes closer, and even today space stations exist and are home to long-term, though not yet permanent, residents. Because of this, there is a growing scientific interest in how changes in the gravitational field influence different aspects of the physiology of living organisms, especially mammals, since these results can normally be closely related to the expected effects on humans. All current research in this field can be classified into two groups. [4]

The first group consists of the experiments that involve gravitational fields of less than one g, termed hypogravity, without artificial gravity, or microgravity. A space station or a spacecraft in a spaceflight will be in hypogravity. Therefore, understanding of the effects of hypogravity on the human body is necessary for prolonged space travel and colonization.

The second group consist of those involving gravitational fields of more than one g, termed hypergravity. For brief periods during take-off and landing of space craft, astronauts are under the influence of hypergravity. Understanding the effects of hypergravity are also necessary if colonization of planets larger than the Earth is ever to take place.

Recent experiments

Recent experiments have proven that alterations in metabolism, immune cell function, cell division, and cell attachment all occur in the hypogravity of space. For example, after a matter of days in microgravity (< 10−3g), human immune cells were unable to differentiate into mature cells. One of the large implications of this is that if certain cells cannot differentiate in space, organisms may not be able to reproduce successfully after exposure to zero gravity.

Scientists believe that the stress associated with space flight is responsible for the inability of some cells to differentiate. These stresses can alter metabolic activities and can disturb the chemical processes in living organisms. A specific example would be that of bone cell growth. Microgravity impedes the development of bone cells. Bone cells must attach themselves to something shortly after development and will die if they cannot. Without the downward pull of a gravitational force on these bone cells, they float around randomly and eventually die off. This suggests that the direction of gravity may give the cells clues as to where to attach themselves.

See also

Related Research Articles

<span class="mw-page-title-main">Outline of biology</span> Outline of subdisciplines within biology

Biology – The natural science that studies life. Areas of focus include structure, function, growth, origin, evolution, distribution, and taxonomy.

<span class="mw-page-title-main">Centrifuge</span> Device using centrifugal force to separate fluids

A centrifuge is a device that uses centrifugal force to subject a specimen to a specified constant force, for example to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities or liquids from solids. It works by causing denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and moved to the centre. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top. A centrifuge can be a very effective filter that separates contaminants from the main body of fluid.

In cellular biology, a somatic cell, or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Somatic cells compose the body of an organism and divide through the process of binary fission and mitotic division.

<span class="mw-page-title-main">Multicellular organism</span> Organism that consists of more than one cell

A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium.

<span class="mw-page-title-main">STS-65</span> 1994 American crewed spaceflight

STS-65 was a Space Shuttle program mission of Columbia launched from Kennedy Space Center, Florida, 8 July 1994. The flight carried a crew of 7 and was commanded by Robert D. Cabana who would go on later to lead the Kennedy Space Center. STS-65 was an international science mission that carried the International Microgravity Laboratory (IML-2) on an 15-day mission. Columbia returned to the Kennedy Space Center on 23 July 1994.

<span class="mw-page-title-main">Iberian ribbed newt</span> Species of amphibian

The Iberian ribbed newt, gallipato or Spanish ribbed newt is a newt endemic to the central and southern Iberian Peninsula and Morocco. It is the largest European newt species and it is also known for its sharp ribs which can puncture through its sides, and as such is also called the sharp-ribbed newt.

The conditions governing sex in space have become a necessary study due to plans for long-duration space missions, as well as the future potential accommodation of sexual partners aboard the International Space Station (ISS). Issues explored include disrupted circadian rhythms, radiation, isolation, stress, and the physical acts of intercourse in zero or minimal gravity.

<span class="mw-page-title-main">Bioastronautics</span> Academic discipline

Bioastronautics is a specialty area of biological and astronautical research which encompasses numerous aspects of biological, behavioral, and medical concern governing humans and other living organisms in a space flight environment; and includes design of payloads, space habitats, and life-support systems. In short, it spans the study and support of life in space.

<span class="mw-page-title-main">Biolab</span> Science payload fitted inside the Columbus laboratory of the ISS

Biolab is a single-rack multi-user science payload designed for use in the Columbus laboratory of the International Space Station. Biolab support biological research on small plants, small invertebrates, microorganisms, animal cells, and tissue cultures. It includes an incubator equipped with centrifuges in which the preceding experimental subjects can be subjected to controlled levels of accelerations.

<span class="mw-page-title-main">Astrobotany</span> Study of plants grown in spacecraft

Astrobotany is an applied sub-discipline of botany that is the study of plants in space environments. It is a branch of astrobiology and botany.

<span class="mw-page-title-main">Clinostat</span>

A clinostat is a device which uses rotation to negate the effects of gravitational pull on plant growth (gravitropism) and development (gravimorphism). It has also been used to study the effects of microgravity on cell cultures, animal embryos and spider webs.

<span class="mw-page-title-main">Weightlessness</span> Zero apparent weight, microgravity

Weightlessness is the complete or near-complete absence of the sensation of weight, i.e., zero apparent weight. It is also termed zero g-force, or zero-g or, incorrectly, zero gravity.

<span class="mw-page-title-main">Microgravity Centre</span>

The Microgravity Centre, colloquially known as the "MicroG", at PUCRS university, Porto Alegre, Brazil, was initially created as a laboratory in 1999 by Professor Thais Russomano MD MSc PhD, as the first academic and research establishment dedicated to Space Life Sciences in Latin America. It evolved into a fully multidisciplinary centre in 2006, expanding its areas of research beyond aerospace medicine and engineering, to include pharmaceuticals, biomechanics and physiotherapy, among others.

ELIPS - European Programme for Life and Physical Sciences in Space and applications utilising the International Space Station started in 2001 and was intended to cover the activities for the following 5 years. This Microgravity Programme at the European Space Agency (ESA) is an optional programme, with currently 17 ESA member states participating. The ELIPS programme prepares and performs research on the International Space Station, and other uncrewed mission platforms like Sounding Rockets, in fundamental and applied life and physical sciences. ELIPS is the continuation of the earlier European microgravity programmes EMIR 1&2, and the Microgravity Facilities for Columbus, MFC.

<span class="mw-page-title-main">Hypergravity</span> Environment where Earths surface gravity is exceeded

Hypergravity is defined as the condition where the force of gravity exceeds that on the surface of the Earth. This is expressed as being greater than 1 g. Hypergravity conditions are created on Earth for research on human physiology in aerial combat and space flight, as well as testing of materials and equipment for space missions. Manufacturing of titanium aluminide turbine blades in 20 g is being explored by researchers at the European Space Agency (ESA) via an 8-meter wide Large Diameter Centrifuge (LDC).

This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology, Glossary of environmental science and Glossary of scientific naming, or any of the organism-specific glossaries in Category:Glossaries of biology.

The following page is a list of scientific research that is currently underway or has been previously studied on the International Space Station by the European Space Agency.

<span class="mw-page-title-main">Locomotion in space</span> Movement of astronauts bodies in outer space

Locomotion in space includes all actions or methods used to move one's body in microgravity conditions through the outer space environment. Locomotion in these conditions is different from locomotion in a gravitational field. There are many factors that contribute to these differences, and they are crucial when researching long-term survival of humans in space.

The ISS U.S. National Lab, commonly known as the ISS National Lab, is a U.S. government-funded national laboratory established on 30 December 2005 by the 2005 NASA Authorization Act. With principal research facilities located in the United States Orbital Segment (USOS) of the International Space Station (ISS), the Laboratory conducts research in life sciences, physical sciences, technology development and remote sensing for a broad range of academic, government and commercial users. Of the 270 payloads that the Center for the Advancement of Science in Space (CASIS) has sent to the ISS, 176 have been for commercial companies including Merck & Co., Novartis, Eli Lilly and Company, Hewlett Packard Enterprise, Honeywell, and Procter & Gamble.

<span class="mw-page-title-main">Microgravity bioprinting</span>

Microgravity bioprinting is the utilization of 3D bioprinting techniques under microgravity conditions to fabricate highly complex, functional tissue and organ structures. The zero gravity environment circumvents some of the current limitations of bioprinting on Earth including magnetic field disruption and biostructure retention during the printing process. Microgravity bioprinting is one of the initial steps to advancing in space exploration and colonization while furthering the possibilities of regenerative medicine.

References

  1. "Archived copy". Archived from the original on 2007-08-31. Retrieved 2006-12-25.{{cite web}}: CS1 maint: archived copy as title (link) Astrobiology: The Living Universe - Gravitational Biology
  2. Shamei, Arian; Soskuthy, Marton; Stavness, Ian; Gick, Bryan (May 2023). "Postural adaptation to microgravity underlies fine motor impairment in astronauts' speech". Scientific Reports. 13 (1): 8231. doi: 10.1038/s41598-023-34854-w . PMC   10203284 .
  3. "Gravitational Zoology: How Animals Use and Cope with Gravity" Ralf H. Anken, Hinrich Rahmann. 2001. "Archived copy" (PDF). Archived from the original (PDF) on 2006-09-28. Retrieved 2006-12-25.{{cite web}}: CS1 maint: archived copy as title (link)
  4. "Models to Study Gravitational Biology of Mammalian Reproduction". Janet Tou, April Ronca, Richard Grindeland, and Charles Wade. Biology of Reproduction vol. 67. 2002. Tou, J.; Ronca, A.; Grindeland, R.; Wade, C. (2002). "Models to Study Gravitational Biology of Mammalian Reproduction -- Tou et al., 10.1095/Biolreprod.102.007252 -- Biology of Reproduction". Biology of Reproduction. 67 (6): 1681–1687. doi: 10.1095/Biolreprod.102.007252 . PMID   12444041. S2CID   11623298. Archived from the original on 2007-06-30. Retrieved 2006-12-25.