Gravitationally-interacting massive particles

Last updated

Gravitationally-interacting massive particles (GIMPs) are a set of particles theorised [1] [2] to explain the dark matter in our universe, as opposed to an alternative theory based on weakly-interacting massive particles (WIMPs). The proposal makes dark matter a form of singularities in dark energy, described by Einstein's gravitational field equations for General Relativity.

Contents

Background

Dark matter was postulated in 1933 by Zwicky, who noticed the failure of the velocity curves of stars to decrease when plotted as functions of their distance from the center of galaxies. [3] [4]

Since Albert Einstein’s development of General Relativity, our universe has been best described on the macroscopic scale by four-dimensional spacetime whose metric is calculated via the Einstein field equations:

Here Rμν is the Ricci curvature tensor, R is the scalar curvature, gμν the metric tensor, G Newton’s gravitational constant, c the speed of light in vacuum, and Tμν is the stress–energy tensor. The symbol Λ represents the “cosmological constant”. [5] [6]

WIMPs would be elementary particles described by the Standard Model of quantum mechanics, which could be studied by experiments in particle laboratories such as CERN. In contrast, the proposed GIMP particles would follow the vacuum solutions of Einstein’s equations for gravity. They would be singular structures in spacetime, embedded within a geometry whose average forms the dark energy that Einstein expressed in his cosmological constant.

Implications

The proposed identification of dark matter with GIMPs makes dark matter a form of dark energy filled with singularities, i.e., “entangled” dark energy. [7] This would roughly affirm Einstein's hope in 1919 that all particles in the universe would follow the traceless version of his equation. [5]

If we identify all matter as the sum of dark energy plus dark matter in the form of GIMPs, his expectation would turn out to have been almost right. Matter would play a role similar to point charges in the homogeneous Maxwell equation in which delta functions are ignored. The sum of dark matter plus dark energy makes up 76% of all matter, which is sufficient to allow computer simulations to produce a good representation of the behavior of all matter. [8]

Related Research Articles

General relativity Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1916 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

Kaluza–Klein theory Unified field theory

In physics, Kaluza–Klein theory is a classical unified field theory of gravitation and electromagnetism built around the idea of a fifth dimension beyond the common 4D of space and time and considered an important precursor to string theory. Gunnar Nordström had an earlier, similar idea. But in that case, a fifth component was added to the electromagnetic vector potential, representing the Newtonian gravitational potential, and writing the Maxwell equations in five dimensions.

Gravitational singularity Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is so intense that spacetime itself breaks down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

Stress–energy tensor Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

Einstein field equations Field equations in general relativity

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

Einstein–Hilbert action

The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the principle of least action. With the (− + + +) metric signature, the gravitational part of the action is given as

Semiclassical gravity is the approximation to the theory of quantum gravity in which one treats matter fields as being quantum and the gravitational field as being classical.

Einstein tensor Tensor used in general relativity

In differential geometry, the Einstein tensor is used to express the curvature of a pseudo-Riemannian manifold. In general relativity, it occurs in the Einstein field equations for gravitation that describe spacetime curvature in a manner that is consistent with conservation of energy and momentum.

Mathematics of general relativity Mathematical structures and techniques used in the theory of general relativity

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are used. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

History of general relativity Overview of the history of general relativity

General relativity is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915, with contributions by many others after 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by those masses.

Solutions of the Einstein field equations are spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

In general relativity, the metric tensor is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

Scalar theories of gravitation are field theories of gravitation in which the gravitational field is described using a scalar field, which is required to satisfy some field equation.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

Theoretical motivation for general relativity

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

Scalar–tensor–vector gravity (STVG) is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition to Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

Bimetric gravity or bigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories of gravity in which two metric tensors are used instead of one. The second metric may be introduced at high energies, with the implication that the speed of light could be energy-dependent, enabling models with a variable speed of light.

References

  1. Holthausen, Martin; Takahashi, Ryo (12 July 2010). "GIMPs from extra dimensions". Physics Letters B. 691 (1): 56–59. arXiv: 0912.2262 . Bibcode:2010PhLB..691...56H. doi:10.1016/j.physletb.2010.06.012. S2CID   118861226.
  2. Kleinert, Hagen (2016). "The GIMP Nature of Dark Matter". Electronic Journal of Theoretical Physics . 13: 1–12.
  3. Zwicky, Fritz (2009). "Republication of: The redshift of extragalactic nebulae". General Relativity and Gravitation. 41 (1): 207–224. Bibcode:2009GReGr..41..207Z. doi:10.1007/s10714-008-0707-4. ISSN   0001-7701. S2CID   119979381.
  4. Zwicky, Fritz (1957). Morphological Astronomy. Berlin; Heidelberg: Springer Berlin Heidelberg. ISBN   9783642875441. OCLC   840301926.
  5. 1 2 Einstein, Albert (1919). "Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle?". Albert Einstein: Akademie-Vorträge. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA. pp. 167–175. doi:10.1002/3527608958.ch15. ISBN   9783527608959.
  6. Sauer, Tilman (1 October 2012). "On Einstein's early interpretation of the cosmological constant". Annalen der Physik. 524 (9–10): 135–138. Bibcode:2012AnP...524A.135S. doi:10.1002/andp.201200746. ISSN   0003-3804. S2CID   121263733.
  7. Kleinert, Hagen (2017). Particles and Quantum Fields. Singapore: World Scientific. pp. 1545–1553. ISBN   978-9814740890. OCLC   934197277.
  8. Springel, Volker (27 September 2016). Hydrodynamical simulations of galaxy formation: Progress, pitfalls, and promises. YouTube (video). Joint IAS/PU Astrophysics Colloquium. Retrieved 25 May 2018.