![]() | This article needs to be updated.(January 2020) |
This article is intended to give an overview of the greenhouse gas emissions in the U.S. state of Kentucky .
The report "Kentucky Greenhouse Gas Inventory" provides a detailed inventory of greenhouse gas emissions and sinks for Kentucky in 1990. Emissions were estimated using methods from EPA's 1995 guidance document State Workbook: Methodologies for Estimating Greenhouse Gas Emissions. In 1990, Kentucky emitted 35.4 million metric tons of carbon equivalent (MMTCE). In addition, Kentucky estimated emissions of 0.4 MMTCE from biofuels. Emissions from biofuels are not included.
The principal of greenhouse gases were carbon dioxide, comprising 87.9 million metric tons (24.0 MMTCE), and methane, with 1.1 million metric tons (6.4 MMTCE). Other emissions included 0.0016 million metric tons of perfluorocarbons (PFCs) (4.8 MMTCE), and 0.003 million metric tons of nitrous oxide (0.2 MMTCE).
The major source of carbon dioxide emissions was fossil fuel combustion (96%), the majority[ quantify ] of which is utility coal.[ clarification needed ] Minor emissions came from cement and lime production and forest/grassland conversion. Carbon dioxide sinks (i.e., an increase in forest carbon storage) offset about 26% of the total carbon dioxide emissions.
Sources of methane emissions were coal mining (73%), domesticated animals (12%), landfills (10%), manure management (3%), and natural gas/oil extraction (2%).
Nitrous oxide emissions were from fertilizer use. Sources of perfluorocarbons were HCFC-22 production (91%) and aluminum production (9%).
Compared to the 1990 U.S. emissions of 6.4 MTCE per capita, Kentucky's emissions were 9.6 MTCE per person. Due to the substantial amount of coal-related activities taking place in Kentucky, the state has high emissions per person. [1]
A great deal of greenhouse gas emissions and toxic pollutants in Kentucky originate in coal-seam fires. These can continue to burn for hundreds of years due to the low supply of oxygen leading to a slow rate of skin burns. [2]
Coal-seam fires in Kentucky include the Truman Shepherd fire in Floyd and Knott counties (1400 t/yr CO2 in 2010), [3] the Ruth Mullins fire in Perry County (726 t/yr CO2 in 2010), [3] the Old Smokey fire in Floyd County, [4] The Truman Shepherd fire was brought down to less than 66 t/yr CO2 by 2013 through mitigating actions. [5]
![]() | This section needs to be updated.(May 2019) |
Carbon sequestration is the process of injecting carbon-dioxide into geological formations in order to store it and prevent it entering the atmosphere. Pumping carbon-dioxide into geological formations has been done in the oil industry for some time for the purpose of extracting oil. For this reason the technology is considered proven, at least as far as the physical pumping is concerned. Unmineable coal seams are one possible formation that could be used for this purpose. As of 2010, there are plans to conduct a feasibility study in conjunction with the Kentucky Geological Survey. The Kentucky Carbon Storage Foundation will drill the test well. The facility is intended to serve a coal gasification plant planned by Peabody Energy and ConocoPhillips. [6]
In 2020, Kentucky power plants were emitting 53,725,429 tons of carbon dioxide into the air. [7]
A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal, oil, or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.
An emission intensity is the emission rate of a given pollutant relative to the intensity of a specific activity, or an industrial production process; for example grams of carbon dioxide released per megajoule of energy produced, or the ratio of greenhouse gas emissions produced to gross domestic product (GDP). Emission intensities are used to derive estimates of air pollutant or greenhouse gas emissions based on the amount of fuel combusted, the number of animals in animal husbandry, on industrial production levels, distances traveled or similar activity data. Emission intensities may also be used to compare the environmental impact of different fuels or activities. In some case the related terms emission factor and carbon intensity are used interchangeably. The jargon used can be different, for different fields/industrial sectors; normally the term "carbon" excludes other pollutants, such as particulate emissions. One commonly used figure is carbon intensity per kilowatt-hour (CIPK), which is used to compare emissions from different sources of electrical power.
A carbon footprint (or greenhouse gas footprint) is a calculated value or index that makes it possible to compare the total amount of greenhouse gases that an activity, product, company or country adds to the atmosphere. Carbon footprints are usually reported in tonnes of emissions (CO2-equivalent) per unit of comparison. Such units can be for example tonnes CO2-eq per year, per kilogram of protein for consumption, per kilometer travelled, per piece of clothing and so forth. A product's carbon footprint includes the emissions for the entire life cycle. These run from the production along the supply chain to its final consumption and disposal.
Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. In CCS, the CO2 is captured from a large point source, such as a chemical plant, coal power plant, cement kiln, or bioenergy plant, and typically is stored in a suitable geological formation.
Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide, from burning fossil fuels such as coal, oil, and natural gas, is one of the most important factors in causing climate change. The largest emitters are China followed by the United States. The United States has higher emissions per capita. The main producers fueling the emissions globally are large oil and gas companies. Emissions from human activities have increased atmospheric carbon dioxide by about 50% over pre-industrial levels. The growing levels of emissions have varied, but have been consistent among all greenhouse gases. Emissions in the 2010s averaged 56 billion tons a year, higher than any decade before. Total cumulative emissions from 1870 to 2022 were 703 GtC, of which 484±20 GtC from fossil fuels and industry, and 219±60 GtC from land use change. Land-use change, such as deforestation, caused about 31% of cumulative emissions over 1870–2022, coal 32%, oil 24%, and gas 10%.
The United States produced 5.2 billion metric tons of carbon dioxide equivalent greenhouse gas (GHG) emissions in 2020, the second largest in the world after greenhouse gas emissions by China and among the countries with the highest greenhouse gas emissions per person. In 2019 China is estimated to have emitted 27% of world GHG, followed by the United States with 11%, then India with 6.6%. In total the United States has emitted a quarter of world GHG, more than any other country. Annual emissions are over 15 tons per person and, amongst the top eight emitters, is the highest country by greenhouse gas emissions per person.
Carbon monitoring as part of greenhouse gas monitoring refers to tracking how much carbon dioxide or methane is produced by a particular activity at a particular time. For example, it may refer to tracking methane emissions from agriculture, or carbon dioxide emissions from land use changes, such as deforestation, or from burning fossil fuels, whether in a power plant, automobile, or other device. Because carbon dioxide is the greenhouse gas emitted in the largest quantities, and methane is an even more potent greenhouse gas, monitoring carbon emissions is widely seen as crucial to any effort to reduce emissions and thereby slow climate change.
Coal generated about 19.5% of the electricity at utility-scale facilities in the United States in 2022, down from 38.6% in 2014 and 51% in 2001. In 2021, coal supplied 9.5 quadrillion British thermal units (2,800 TWh) of primary energy to electric power plants, which made up 90% of coal's contribution to U.S. energy supply. Utilities buy more than 90% of the coal consumed in the United States. There were over 200 coal powered units across the United States in 2024. Coal plants have been closing since the 2010s due to cheaper and cleaner natural gas and renewables. Due to measures such as scrubbers air pollution from the plants kills far fewer people nowadays, but deaths in 2020 from PM 2.5 have been estimated at 1600. Environmentalists say that political action is needed to close them faster, to also reduce greenhouse gas emissions by the United States and better limit climate change.
Greenhouse gas emissions by Australia totalled 533 million tonnes CO2-equivalent based on greenhouse gas national inventory report data for 2019; representing per capita CO2e emissions of 21 tons, three times the global average. Coal was responsible for 30% of emissions. The national Greenhouse Gas Inventory estimates for the year to March 2021 were 494.2 million tonnes, which is 27.8 million tonnes, or 5.3%, lower than the previous year. It is 20.8% lower than in 2005. According to the government, the result reflects the decrease in transport emissions due to COVID-19 pandemic restrictions, reduced fugitive emissions, and reductions in emissions from electricity; however, there were increased greenhouse gas emissions from the land and agriculture sectors.
The milestones for carbon capture and storage show the lack of commercial scale development and implementation of CCS over the years since the first carbon tax was imposed.
Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. What distinguishes them from other gases is that they absorb the wavelengths of radiation that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F).
Bioenergy with carbon capture and storage (BECCS) is the process of extracting bioenergy from biomass and capturing and storing the carbon, thereby removing it from the atmosphere. BECCS can theoretically be a "negative emissions technology" (NET), although its deployment at the scale considered by many governments and industries can "also pose major economic, technological, and social feasibility challenges; threaten food security and human rights; and risk overstepping multiple planetary boundaries, with potentially irreversible consequences". The carbon in the biomass comes from the greenhouse gas carbon dioxide (CO2) which is extracted from the atmosphere by the biomass when it grows. Energy ("bioenergy") is extracted in useful forms (electricity, heat, biofuels, etc.) as the biomass is utilized through combustion, fermentation, pyrolysis or other conversion methods.
In 2021, net greenhouse gas (GHG) emissions in the United Kingdom (UK) were 427 million tonnes (Mt) carbon dioxide equivalent, 80% of which was carbon dioxide itself. Emissions increased by 5% in 2021 with the easing of COVID-19 restrictions, primarily due to the extra road transport. The UK has over time emitted about 3% of the world total human caused CO2, with a current rate under 1%, although the population is less than 1%.
China's greenhouse gas emissions are the largest of any country in the world both in production and consumption terms, and stem mainly from coal burning, including coal power, coal mining, and blast furnaces producing iron and steel. When measuring production-based emissions, China emitted over 14 gigatonnes (Gt) CO2eq of greenhouse gases in 2019, 27% of the world total. When measuring in consumption-based terms, which adds emissions associated with imported goods and extracts those associated with exported goods, China accounts for 13 gigatonnes (Gt) or 25% of global emissions. According to the Carbon Majors Database, Chinese state coal production alone accounts for 14% of historic global emissions.
Greenhouse gas emissionsbyRussia are mostly from fossil gas, oil and coal. Russia emits 2 or 3 billion tonnes CO2eq of greenhouse gases each year; about 4% of world emissions. Annual carbon dioxide emissions alone are about 12 tons per person, more than double the world average. Cutting greenhouse gas emissions, and therefore air pollution in Russia, would have health benefits greater than the cost. The country is the world's biggest methane emitter, and 4 billion dollars worth of methane was estimated to leak in 2019/20.
This article incorporates public domain material from Kentucky Greenhouse Gas Emissions and Sinks Inventory: Summary (PDF). U.S. Environmental Protection Agency.