Greenlizardite

Last updated
Greenlizardite
General
Category Sulfate
Formula
(repeating unit)
(NH)4Na(UO2)2(SO4)2(OH)2•4H2O
IMA symbol Glz [1]
Crystal system Triclinic
Crystal class 1 [1]
Space group P1 [1]
Unit cell a = 6.83617  Å, b = 9.5127 Å
c = 13.8979 Å;
α = 98.636°, β = 93.713°,
γ = 110.102°;
Z = 2
Identification
ColorLight green-yellow
Crystal habit Bladed
Cleavage Perfect along {100} and good along {210}
Tenacity Brittle
Mohs scale hardness~2
Luster Vitreous
Diaphaneity Transparent
Density 3.469 g/cm3 (calculated)
Optical propertiesBiaxial positive
Refractive index nα= 1.559 nβ= 1.582 nγ= 1.608
Birefringence δ = 0.049
Pleochroism Weak
Other characteristics Radioactive.svg Radioactive

Greenlizardite is a rare sulfate mineral discovered underground in the Green Lizard Mine, which the mineral was named for, in Utah. The mineral was found in mineralized ore channels within the Shinarump member of the Chinle formation. It occurs as a secondary alteration phase. It is associated with ammoniozippeite, boussingaultite, and dickite. Greenlizardite was approved as a mineral by the International Mineralogical Association in 2017. [2]

Contents

Physical properties

Greenlizardite forms in a bladed habit, with blades up to 0.3 mm long. Its color is light green-yellow. It is highly soluble in water at room temperature. Its hardness is approximately two on the Mohs hardness scale and it has a white streak. Greenlizardite is brittle with irregular fracture. It has perfect cleavage in the [001] direction and good cleavage in the [210] direction. It is transparent and has vitreous luster. The calculated density of the empirical formula of Greenlizardite is 3.469 g/cm3. [2]

Optical properties

Greenlizardite is biaxial positive. Twinning is observed in cross polarized light and it displays weak pleochroism and moderate dispersion. Under a 50 mW 540 nm blue violet laser, it fluoresces greenish-blue. Refractive indices are α = 1.559, β = 1.582 and γ = 1.608. [2]

Composition

The calculated empirical formula of Greenlizardite is (NH4)0.98Na1.00U1.96S2.04O18.00H10.0. Its ideal formula is (NH4)Na(UO2)2(SO4)2(OH)2·4H2O. [2]

Crystal structure

A U6+ atom is surrounded by 7 O atoms in a pentagonal bipyramid shape. These UO7 pentagonal bipyramids are connected in pairs, sharing one common edge. The UO7 dimers share corners with SO4 groups, forming sheets with the composition [(UO2)2(SO4)2(OH)2]2- . These sheets are parallel to the (001) plane. The corner of each SO4 group not shared with the UO7 bipyramids within the same sheet points in the same direction. Each Na atom is bonded to two different uranyl O atoms in two separate adjacent sheets. Each Na atom is also bonded to two Sulfate O atoms from each of the two adjacent sheets, for a total of 6 O atoms coordinated around. These NaO6 octahedra are oriented along the (100) plane in zigzag shaped chains by sharing edges. These zigzag shaped chains link the two adjacent sheets together to form a slab. Within this slab structure, there are channels along the (100) plane that contain isolated H20 groups. The slabs are connected by a NH4 bonded to two uranyl O atoms from one adjacent slab and one equatorial O atom from a UO7 group in the other slab, as well as three H2O groups. [2]

Related Research Articles

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Leadhillite</span> Lead sulfate carbonate hydroxide mineral

Leadhillite is a lead sulfate carbonate hydroxide mineral, often associated with anglesite. It has the formula Pb4SO4(CO3)2(OH)2. Leadhillite crystallises in the monoclinic system, but develops pseudo-hexagonal forms due to crystal twinning. It forms transparent to translucent variably coloured crystals with an adamantine lustre. It is quite soft with a Mohs hardness of 2.5 and a relatively high specific gravity of 6.26 to 6.55.

The uranyl ion is an oxycation of uranium in the oxidation state +6, with the chemical formula UO2+
2
. It has a linear structure with short U–O bonds, indicative of the presence of multiple bonds between uranium and oxygen. Four or more ligands may be bound to the uranyl ion in an equatorial plane around the uranium atom. The uranyl ion forms many complexes, particularly with ligands that have oxygen donor atoms. Complexes of the uranyl ion are important in the extraction of uranium from its ores and in nuclear fuel reprocessing.

<span class="mw-page-title-main">Campigliaite</span> Copper and manganese sulfate mineral

Campigliaite is a copper and manganese sulfate mineral with a chemical formula of Cu4Mn(SO4)2(OH)6·4H2O. It has a chemical formula and also a crystal structure similar to niedermayrite, with Cd(II) cation replacing by Mn(II). The formation of campigliaite is related to the oxidation of sulfide minerals to form sulfate solutions with ilvaite associated with the presence of manganese. Campigliaite is a rare secondary mineral formed when metallic sulfide skarn deposits are oxidized. While there are several related associations, there is no abundant source for this mineral due to its rare process of formation. Based on its crystallographic data and chemical formula, campigliaite is placed in the devillite group and considered the manganese analogue of devillite. Campigliaite belongs to the copper oxysalt minerals as well followed by the subgroup M=M-T sheets. The infinite sheet structures that campigliaite has are characterized by strongly bonded polyhedral sheets, which are linked in the third dimension by weaker hydrogen bonds.

<span class="mw-page-title-main">Bergenite</span> Rare uranyl phosphate of the more specific phosphuranylite group

Bergenite is a rare uranyl phosphate of the more specific phosphuranylite group. The phosphuranylite-type sheet in bergenite is a new isomer of the group, with the uranyl phosphate tetrahedra varying in an up-up-down, same-same-opposite (uuduudSSOSSO) orientation. All bergenite samples have been found in old mine dump sites. Uranyl minerals are a large constituent of uranium deposits.

<span class="mw-page-title-main">Cornubite</span> Copper arsenate mineral

Cornubite is a rare secondary copper arsenate mineral with formula: Cu5(AsO4)2(OH)4. It was first described for its discovery in 1958 in Wheal Carpenter, Gwinear, Cornwall, England, UK. The name is from Cornubia, the medieval Latin name for Cornwall. It is a dimorph of cornwallite, and the arsenic analogue of pseudomalachite.

This list gives an overview of the classification of non-silicate minerals and includes mostly International Mineralogical Association (IMA) recognized minerals and its groupings. This list complements the List of minerals recognized by the International Mineralogical Association series of articles and List of minerals. Rocks, ores, mineral mixtures, not IMA approved minerals, not named minerals are mostly excluded. Mostly major groups only, or groupings used by New Dana Classification and Mindat.

Paulscherrerite, UO2(OH)2, is a newly named mineral of the schoepite subgroup of hexavalent uranium hydrate/hydroxides. It is monoclinic, but no space group has been determined because no single-crystal study has been done. Paulscherrerite occurs as a canary yellow microcrystalline powdery product with a length of ~500 nm. It forms by the weathering and ultimate pseudomorphism of uranium-lead bearing minerals such as metaschoepite. The type locality for paulscherrerite is the Number 2 Workings, Radium Ridge near Mount Painter, North Flinders Ranges, South Australia, an area where radiogenic heat has driven hydrothermal activity for millions of years. It is named for Swiss physicist Paul Scherrer, co-inventor of the Debye-Scherrer X-ray powder diffraction camera. Study of paulscherrerite and related minerals is important for understanding the mobility of uranium around mining sites, as well as designing successful strategies for the storage of nuclear weapons and the containment of nuclear waste.

<span class="mw-page-title-main">Rapidcreekite</span>

Rapidcreekite is a rare mineral with formula Ca2(SO4)(CO3)·4H2O. The mineral is white to colorless and occurs as groupings of acicular (needle-shaped) crystals. It was discovered in 1983 in northern Yukon, Canada, and described in 1986. Rapidcreekite is structurally and compositionally similar to gypsum.

<span class="mw-page-title-main">Gordaite</span> Sulfate mineral

Gordaite is a sulfate mineral composed primarily of hydrous zinc sodium sulfate chloride hydroxide with formula: NaZn4(SO4)(OH)6Cl·6H2O. It was named for the discovery location in the Sierra Gorda district of Chile. Gordaite forms as tabular trigonal crystals.

Bijvoetite-(Y) is a very rare rare-earth and uranium mineral with the formula (Y,REE)8(UO2)16(CO3)16O8(OH)8·39H2O. When compared to the original description, the formula of bijvoetite-(Y) was changed in the course of crystal structure redefinition. Bijvoetite-(Y) is an example of natural salts containing both uranium and yttrium, the other examples being kamotoite-(Y) and sejkoraite-(Y). Bijvoetite-(Y) comes from Shinkolobwe deposit in Republic of Congo, which is famous for rare uranium minerals. The other interesting rare-earth-bearing uranium mineral, associated with bijvoetite-(Y), is lepersonnite-(Gd).

Fermiite is a rare uranium mineral with the formula Na4(UO2)(SO4)3·3H2O. Chemically related minerals include oppenheimerite, meisserite (which is also structurally-related to fermiite), belakovskiite, natrozippeite and plášilite. Fermiite comes from the Blue Lizard mine, San Juan County, Utah, USA, which is known for many rare uranium minerals. The name honors Enrico Fermi (1901–1954).

Belakovskiite is a very rare uranium mineral with the formula Na7(UO2)(SO4)4(SO3OH)(H2O)3. It is interesting in being a natural uranyl salt with hydrosulfate anion, a feature shared with meisserite. Other chemically related minerals include fermiite, oppenheimerite, natrozippeite and plášilite. Most of these uranyl sulfate minerals was originally found in the Blue Lizard mine, San Juan County, Utah, US. The mineral is named after Russian mineralogist Dmitry Ilych Belakovskiy.

Meisserite is a very rare uranium mineral with the formula Na5(UO2)(SO4)3(SO3OH)(H2O). It is interesting in being a natural uranyl salt with hydrosulfate (hydroxysulfate) anion, a feature shared with belakovskiite. Other chemically related minerals include fermiite, oppenheimerite, natrozippeite and plášilite. Most of these uranyl sulfate minerals was originally found in the Blue Lizard mine, San Juan County, Utah, USA. The mineral is named after Swiss mineralogist Nicolas Meisser.

Oppenheimerite is a very rare uranium mineral with the formula Na2(UO2)(SO4)2•3H2O. Chemically related minerals include fermiite, natrozippeite, plášilite, belakovskiite and meisserite. Most of these uranyl sulfate minerals were originally found in the Blue Lizard mine, San Juan County, Utah, US. The mineral is named after American Theoretical physicist J. Robert Oppenheimer.

Plášilite is a very rare uranium mineral with the formula Na2(UO2)(SO4)2•3H2O. Chemically related minerals include natrozippeite, belakovskiite, meisserite, fermiite and oppenheimerite. Most of these uranyl sulfate minerals were originally found in the Blue Lizard mine, San Juan County, Utah, US. The mineral is named after Czech crystallographer Jakub Plášil.

Metarauchite is a member of the autunite group, found at the Jáchymov ore district, Czech Republic and in Schneeberg, Germany. The autunite group is a group of structured uranyl phosphates and arsenates; the other members of the group are autunite, bassetite, heinrichite, kahlerite, nováčekite-I, nováčekite-II, rauchite, sabugalite, saléeite, torbernite, uranocircite, uranospinite, and zeunerite. The mineral is named after Czech mineral collector Luděk Rauch, who died in the Jáchymov mines during mineral prospecting.

<span class="mw-page-title-main">Arsenuranospathite</span> Rare mineral

Arsenuranospathite (IMA symbol: Aush) is a rare mineral with the chemical formula Al(UO2)2(AsO4)2F·20H2O. The name "arsenuranospathite" as arsenate analog of uranospathite was first used by Walenta (1963) with reference to a uranyl-arsenate mineral from Black Forest (Schwarzwald) massif, Germany.

Meyrowitzite, Ca(UO2)(CO3)2·5H2O, is a carbonate mineral verified in May of 2018 by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association. It is an extremely rare mineral, discovered in the Markey mine Utah, U.S.A. The mineral is a transparent yellow and has blades up to approximately 0.2 mm in length. It is soluble in water or aqueous solutions. Meyrowitzite is named in honor of Robert Meyrowitz (1916–2013), an American analytical chemist. After serving in WW II, he joined the United States Geological Survey (USGS). He was known for developing innovative new methods for analyzing small and difficult to study mineralogical samples along with his formulation of the high-index immersion liquids.

The phosphate sulfates are mixed anion compounds containing both phosphate and sulfate ions. Related compounds include the arsenate sulfates, phosphate selenates, and arsenate selenates.

References

  1. 1 2 3 "Greenlizardite". Mindat. Hudson Institute of Mineralogy. Retrieved 30 November 2023.
  2. 1 2 3 4 5 Kampf, Anthony (1 April 2018). "Greenlizardite, (NH4)Na(UO2)2(SO4)2(OH)2·4H2O, a new mineral with phosphuranylite-type uranyl sulfate sheets from Red Canyon, San Juan County, Utah, USA". Mineralogical Magazine. 2 (82): 401–411. Bibcode:2018MinM...82..401K. doi:10.1180/minmag.2017.081.054. S2CID   264164074 . Retrieved 30 November 2023.