Gregg Zuckerman

Last updated
From left: Gregg Zuckerman, David J. Saltman, Robert Fefferman, Yale 1979 Zuckerman fefferman saltman.jpg
From left: Gregg Zuckerman, David J. Saltman, Robert Fefferman, Yale 1979

Gregg Jay Zuckerman (born 1949) is a mathematician at Yale University who discovered Zuckerman functors and translation functors, and with Anthony W. Knapp classified the irreducible tempered representations of semisimple Lie groups.

Contents

He received his Ph.D. in mathematics from Princeton University in 1975 after completing a doctoral dissertation, titled "Some character identities for semisimple Lie groups", under the supervision of Elias M. Stein. [1]

Publications

Related Research Articles

In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.

In mathematics, Blattner's conjecture or Blattner's formula is a description of the discrete series representations of a general semisimple group G in terms of their restricted representations to a maximal compact subgroup K. It is named after Robert James Blattner, despite not being formulated as a conjecture by him.

In mathematics, a discrete series representation is an irreducible unitary representation of a locally compact topological group G that is a subrepresentation of the left regular representation of G on L²(G). In the Plancherel measure, such representations have positive measure. The name comes from the fact that they are exactly the representations that occur discretely in the decomposition of the regular representation.

David Alexander Vogan Jr. is a mathematician at the Massachusetts Institute of Technology who works on unitary representations of simple Lie groups.

In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ-adic cohomology with compact support, introduced by Pierre Deligne and George Lusztig (1976).

In mathematics, a Zuckerman functor is used to construct representations of real reductive Lie groups from representations of Levi subgroups. They were introduced by Gregg Zuckerman (1978). The Bernstein functor is closely related.

In mathematics, the Springer representations are certain representations of the Weyl group W associated to unipotent conjugacy classes of a semisimple algebraic group G. There is another parameter involved, a representation of a certain finite group A(u) canonically determined by the unipotent conjugacy class. To each pair (u, φ) consisting of a unipotent element u of G and an irreducible representation φ of A(u), one can associate either an irreducible representation of the Weyl group, or 0. The association

In mathematics, the Langlands classification is a description of the irreducible representations of a reductive Lie group G, suggested by Robert Langlands (1973). There are two slightly different versions of the Langlands classification. One of these describes the irreducible admissible (g, K)-modules, for g a Lie algebra of a reductive Lie group G, with maximal compact subgroup K, in terms of tempered representations of smaller groups. The tempered representations were in turn classified by Anthony Knapp and Gregg Zuckerman. The other version of the Langlands classification divides the irreducible representations into L-packets, and classifies the L-packets in terms of certain homomorphisms of the Weil group of R or C into the Langlands dual group.

In mathematics, a tempered representation of a linear semisimple Lie group is a representation that has a basis whose matrix coefficients lie in the Lp space

Anthony W. Knapp is an American mathematician at the State University of New York, Stony Brook working on representation theory, who classified the tempered representations of a semisimple Lie group.

In mathematics, the main results concerning irreducible unitary representations of the Lie group SL(2, R) are due to Gelfand and Naimark (1946), V. Bargmann (1947), and Harish-Chandra (1952).

<span class="mw-page-title-main">Jeffrey Adams (mathematician)</span> American mathematician

Jeffrey David Adams (born 1956) is a mathematician at the University of Maryland who works on unitary representations of reductive Lie groups and who led the project Atlas of Lie Groups and Representations that calculated the characters of the representations of E8. The project to calculate the representations of E8 has been compared to the Human Genome Project in scope. Together with Dan Barbasch and David Vogan, he co-authored a monograph on a geometric approach to the Langlands classification and Arthur's conjectures in the real case.

In mathematics, a prehomogeneous vector space (PVS) is a finite-dimensional vector space V together with a subgroup G of the general linear group GL(V) such that G has an open dense orbit in V. The term prehomogeneous vector space was introduced by Mikio Sato in 1970. These spaces have many applications in geometry, number theory and analysis, as well as representation theory. The irreducible PVS were classified first by Vinberg in his 1960 thesis in the special case when G is simple and later by Sato and Tatsuo Kimura in 1977 in the general case by means of a transformation known as "castling". They are subdivided into two types, according to whether the semisimple part of G acts prehomogeneously or not. If it doesn't then there is a homogeneous polynomial on V which is invariant under the semisimple part of G.

<span class="mw-page-title-main">Representation theory</span> Branch of mathematics that studies abstract algebraic structures

Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations. The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories.

In mathematical representation theory, a (Zuckerman) translation functor is a functor taking representations of a Lie algebra to representations with a possibly different central character. Translation functors were introduced independently by Zuckerman (1977) and Jantzen (1979). Roughly speaking, the functor is given by taking a tensor product with a finite-dimensional representation, and then taking a subspace with some central character.

In mathematics, a holomorphic discrete series representation is a discrete series representation of a semisimple Lie group that can be represented in a natural way as a Hilbert space of holomorphic functions. The simple Lie groups with holomorphic discrete series are those whose symmetric space is Hermitian. Holomorphic discrete series representations are the easiest discrete series representations to study because they have highest or lowest weights, which makes their behavior similar to that of finite-dimensional representations of compact Lie groups.

<span class="mw-page-title-main">Thomas Jones Enright</span> American mathematician (1947–2019)

Thomas Jones Enright was an American mathematician known for his work in the algebraic theory of representations of real reductive Lie groups.

This is a glossary of representation theory in mathematics.

In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra . There is a closely related theorem classifying the irreducible representations of a connected compact Lie group . The theorem states that there is a bijection

<span class="mw-page-title-main">Representation theory of semisimple Lie algebras</span>

In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.

References