Gridiron pendulum

Last updated
Wall clock with a 5-rod gridiron pendulum Scienne zegary wahadlowy - 09.05.2013.jpg
Wall clock with a 5-rod gridiron pendulum
Tidens naturlaere fig22.png
Zinc-steel gridiron with 5 rods
Gridiron pendulum.png
Brass-steel gridiron with 9 rods
Tubular compensation pendulum.png
Tubular version, with zinc and steel concentric tubes
Ellicott pendulum.png
Ellicott pendulum, another version

The gridiron pendulum was a temperature-compensated clock pendulum invented by British clockmaker John Harrison around 1726. [1] [2] [3] [4] It was used in precision clocks. In ordinary clock pendulums, the pendulum rod expands and contracts with changes in temperature. The period of the pendulum's swing depends on its length, so a pendulum clock's rate varied with changes in ambient temperature, causing inaccurate timekeeping. The gridiron pendulum consists of alternating parallel rods of two metals with different thermal expansion coefficients, such as steel and brass. The rods are connected by a frame in such a way that their different thermal expansions (or contractions) compensate for each other, so that the overall length of the pendulum, and thus its period, stays constant with temperature.

Contents

The gridiron pendulum was used during the Industrial Revolution period in pendulum clocks, particularly precision regulator clocks [1] employed as time standards in factories, laboratories, office buildings, railroad stations and post offices to schedule work and set other clocks. The gridiron became so associated with accurate timekeeping that by the turn of the 20th century many clocks had pendulums with decorative fake gridirons, which had no temperature compensating qualities. [1] [4]

How it works

A: exterior schematic
B: normal temperature
C: higher temperature BanjoPendulum.png
A: exterior schematic
B: normal temperature
C: higher temperature

The gridiron pendulum is constructed so the high thermal expansion (zinc or brass) rods make the pendulum shorter when they expand, while the low expansion steel rods make the pendulum longer. By using the correct ratio of lengths, the greater expansion of the zinc or brass rods exactly compensate for the greater length of the low expansion steel rods, and the pendulum stays the same length with temperature changes. [2]

The simplest form of gridiron pendulum, introduced as an improvement to Harrison's around 1750 by John Smeaton, consists of five rods, 3 of steel and two of zinc. A central steel rod runs up from the bob to the suspension pivot.

At that point a cross-piece (middle bridge) extends from the central rod and connects to two zinc rods, one on each side of the central rod, which reach down to, and are fixed to, the bottom bridge just above the bob. The bottom bridge clears the central rod and connects to two further steel rods which run back up to the top bridge attached to the suspension. As the steel rods expand in heat, the bottom bridge drops relative to the suspension, and the bob drops relative to the middle bridge. However, the middle bridge rises relative to the bottom one because the greater expansion of the zinc rods pushes the middle bridge, and therefore the bob, upward to match the combined drop caused by the expanding steel.

In simple terms, the upward expansion of the zinc counteracts the combined downward expansion of the steel (which has a greater total length). The rod lengths are calculated so that the effective length of the zinc rods multiplied by zinc's thermal expansion coefficient equals the effective length of the steel rods multiplied by iron's expansion coefficient, thereby keeping the pendulum the same length. [5] [3] [6] :p.261

Harrison's original pendulum used brass rods (pure zinc not being available then); these required more rods because brass does not expand as much as zinc does. Instead of one high expansion rod on each side, two are needed on each side, requiring a total of 9 rods, five steel and four brass. [3] [4] The exact degree of compensation can be adjusted by having a section of the central rod which is partly brass and partly steel. These overlap (like a sandwich) and are joined by a pin which passes through both metals. A number of holes for the pin are made in both parts and moving the pin up or down the rod changes how much of the combined rod is brass and how much is steel.

In the late 19th century the Dent company developed a tubular version of the zinc gridiron in which the four outer rods were replaced by two concentric tubes which were linked by a tubular nut which could be screwed up and down to alter the degree of compensation.

In the 1730s clockmaker John Ellicott designed a version that only required 3 rods, two brass and one steel (see drawing), in which the brass rods as they expanded with increasing temperature pressed against levers which lifted the bob. [7] [1] The Ellicott pendulum did not see much use. [6] :p.272-273

Disadvantages

Scientists in the 1800s found that the gridiron pendulum had disadvantages that made it unsuitable for the highest-precision clocks. [4] The friction of the rods sliding in the holes in the frame caused the rods to adjust to temperature changes in a series of tiny jumps, rather than with a smooth motion. This caused the rate of the pendulum, and therefore the clock, to change suddenly with each jump. Later it was found that zinc is not very stable dimensionally; it is subject to creep. Therefore, another type of temperature-compensated pendulum, the mercury pendulum invented in 1721 by George Graham, was used in the highest-precision clocks. [8] :p.289 [4]

By 1900, the highest-precision astronomical regulator clocks used pendulum rods of low thermal expansion materials such as invar [3] [2] and fused quartz. [4]

Mathematical analysis

Temperature error

All substances expand with an increase in temperature , so uncompensated pendulum rods get longer with a temperature increase, causing the clock to slow down, and get shorter with a temperature decrease, causing the clock to speed up. The amount depends on the linear coefficient of thermal expansion (CTE) of the material they are composed of. CTE is usually given in parts per million per degree Celsius. The expansion or contraction of a rod of length with a coefficient of expansion caused by a temperature change is [9] :p.250,eq.10.19

(1)

The period of oscillation of the pendulum (the time interval for a right swing and a left swing) is [9] :p.239,eq.10.2

(2)

A change in length due to a temperature change will cause a change in the period . Since the expansion coefficient is so small, the length changes due to temperature are very small, parts per million, so and the change in period can be approximated to first order as a linear function [9] :p.250

Substituting equation (1), the change in the pendulum's period caused by a change in temperature is

So the fractional change in an uncompensated pendulum's period is equal to one-half the coefficient of expansion times the change in temperature.

Steel has a CTE of 11.5 x 10−6 per °C so a pendulum with a steel rod will have a thermal error rate of 5.7 parts per million or 0.5 seconds per day per degree Celsius (0.9 seconds per day per degree Fahrenheit). Before 1900 most buildings were unheated, so clocks in temperate climates like Europe and North America would experience a summer/winter temperature variation of around 14 °C (25 °F) resulting in an error rate of 6.8 seconds per day. [6] :p.259 Wood has a smaller CTE of 4.9 x 10−6 per °C thus a pendulum with a wood rod will have a smaller thermal error of 0.21 sec per day per °C, so wood pendulum rods were often used in quality domestic clocks. The wood had to be varnished to protect it from the atmosphere as humidity could also cause changes in length.

Compensation

A gridiron pendulum is symmetrical, with two identical linkages of suspension rods, one on each side, suspending the bob from the pivot. Within each suspension chain, the total change in length of the pendulum is equal to the sum of the changes of the rods that make it up. It is designed so with an increase in temperature the high expansion rods on each side push the pendulum bob up, in the opposite direction to the low expansion rods which push it down, so the net change in length is the difference between these changes

From (1) the change in length of a gridiron pendulum with a temperature change is

where is the sum of the lengths of all the low expansion (steel) rods and is the sum of the lengths of the high expansion rods in the suspension chain from the bob to the pivot. The condition for zero length change with temperature is

(3)

In other words, the ratio of thermal expansion coefficients of the two metals must be equal to the inverse ratio of the total rod lengths. [3] [6] :p.261 [5]
In order to calculate the length of the individual rods, this equation is solved along with equation (2) giving the total length of pendulum needed for the correct period

Most of the precision pendulum clocks with gridirons used a 'seconds pendulum', in which the period was two seconds. The length of the seconds pendulum was 0.9936 meters (39.12 inches).

In an ordinary uncompensated pendulum, which has most of its mass in the bob, the center of oscillation is near the center of the bob, so it was usually accurate enough to make the length from the pivot to the center of the bob 0.9936 m and then correct the clock's period with the adjustment nut. But in a gridiron pendulum, the gridiron constitutes a significant part of the mass of the pendulum. This changes the moment of inertia so the center of oscillation is somewhat higher, above the bob in the gridiron. Therefore the total length of the pendulum must be somewhat longer to give the correct period. This factor is hard to calculate accurately. Another minor factor is that if the pendulum bob is supported at bottom by a nut on the pendulum rod, as is typical, the rise in center of gravity due to thermal expansion of the bob has to be taken into account. Clockmakers of the 19th century usually used recommended lengths for gridiron rods that had been found by master clockmakers by trial and error. [7] :p.52 [8] :p.289

Five rod gridiron

In the 5 rod gridiron, there is one high expansion rod on each side, of length , flanked by two low expansion rods with lengths and , one from the pivot to support the bottom of , the other goes from the top of down to support the bob. [4] So from equation (3) the condition for compensation is

Since to fit in the frame the high expansion rod must be equal to or shorter than each of the low expansion rods and the geometrical condition for construction of the gridiron is

Therefore the 5 rod gridiron can only be made with metals whose expansion coefficients have a ratio greater than or equal to two [4] [9] :p.251

Zinc has a CTE of = 26.2 x 10−6 per °C, a ratio of = 2.28 times steel, so the zinc/steel combination can be used in 5 rod pendulums.
The compensation condition for a zinc/steel gridiron is

Nine rod gridiron

To allow the use of metals with a lower ratio of expansion coefficients, such as brass and steel, a greater proportion of the suspension length must be the high expansion metal, so a construction with more high expansion rods must be used. In the 9 rod gridiron, there are two high expansion rods on each side, of length and , flanked by three low expansion rods with lengths , and . [4] So from equation (3) the condition for compensation is

Since to fit in the frame each of the two high expansion rods must be as short as or shorter than each of the high expansion rods, the geometrical condition for construction is

Therefore the 9 rod gridiron can be made with metals with a ratio of thermal expansion coefficients exceeding 1.5. [4] [9] :p.251

Brass has a CTE of around = 19.3 x 10−6 per °C, a ratio of = 1.68 times steel. So while brass/steel cannot be used in 5 rod gridirons, it can be used in the 9 rod version. [4] So the compensation condition for a brass/steel gridiron using brass with the above CTE is

Definition of variables

SymbolUnitDefinition
degree Celsius−1Coefficient of thermal expansion of the pendulum rod
degree Celsius−1Coefficient of thermal expansion of the high expansion (brass or zinc) rods
degree Celsius−1Coefficient of thermal expansion of the low expansion (steel) rods
degree CelsiusAmbient temperature
noneMathematical constant (3.14159...)
meter×second−2Acceleration of gravity
meterLength of pendulum rod from the pivot to center of gravity of the bob
meterSum of the lengths of the high expansion gridiron rods
meterSum of the lengths of the low expansion gridiron rods
meterLength of the n-th gridiron rod
secondPeriod of the pendulum (time for a complete cycle of two swings)

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Pendulum</span> Mechanism for regulating the speed of clocks

A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging back and forth. The time for one complete cycle, a left swing and a right swing, is called the period. The period depends on the length of the pendulum and also to a slight degree on the amplitude, the width of the pendulum's swing.

In fluid mechanics, the Rayleigh number (Ra, after Lord Rayleigh) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free (or natural) convection. It characterises the fluid's flow regime: a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection. For most engineering purposes, the Rayleigh number is large, somewhere around 106 to 108.

In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability measures defined on a common probability space. It can be used to calculate the informational difference between measurements.

<span class="mw-page-title-main">Bimetallic strip</span> Two-sided strip that coils when heated or cooled

A bimetallic strip or bimetal strip is a strip that consists of two strips of different metals which expand at different rates as they are heated. They are used to convert a temperature change into mechanical displacement. The different expansions force the flat strip to bend one way if heated, and in the opposite direction if cooled below its initial temperature. The metal with the higher coefficient of thermal expansion is on the outer side of the curve when the strip is heated and on the inner side when cooled.

In numerical analysis, the Clenshaw algorithm, also called Clenshaw summation, is a recursive method to evaluate a linear combination of Chebyshev polynomials. The method was published by Charles William Clenshaw in 1955. It is a generalization of Horner's method for evaluating a linear combination of monomials.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

In quantum physics, the scattering amplitude is the probability amplitude of the outgoing spherical wave relative to the incoming plane wave in a stationary-state scattering process. At large distances from the centrally symmetric scattering center, the plane wave is described by the wavefunction

Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form, and eventually lead to structural failure.

<span class="mw-page-title-main">Laser beam welding</span> Welding technique

Laser beam welding (LBW) is a welding technique used to join pieces of metal or thermoplastics through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates. The process is frequently used in high volume and precision requiring applications using automation, as in the automotive and aeronautics industries. It is based on keyhole or penetration mode welding.

<span class="mw-page-title-main">Balance wheel</span> Time measuring device

A balance wheel, or balance, is the timekeeping device used in mechanical watches and small clocks, analogous to the pendulum in a pendulum clock. It is a weighted wheel that rotates back and forth, being returned toward its center position by a spiral torsion spring, known as the balance spring or hairspring. It is driven by the escapement, which transforms the rotating motion of the watch gear train into impulses delivered to the balance wheel. Each swing of the wheel allows the gear train to advance a set amount, moving the hands forward. The balance wheel and hairspring together form a harmonic oscillator, which due to resonance oscillates preferentially at a certain rate, its resonant frequency or "beat", and resists oscillating at other rates. The combination of the mass of the balance wheel and the elasticity of the spring keep the time between each oscillation or "tick" very constant, accounting for its nearly universal use as the timekeeper in mechanical watches to the present. From its invention in the 14th century until tuning fork and quartz movements became available in the 1960s, virtually every portable timekeeping device used some form of balance wheel.

<span class="mw-page-title-main">Thermal expansion</span> Tendency of matter to change volume in response to a change in temperature

Thermal expansion is the tendency of matter to increase in length, area, or volume, changing its size and density, in response to an increase in temperature . Substances usually contract with decreasing temperature, with rare exceptions within limited temperature ranges.

Gauge factor (GF) or strain factor of a strain gauge is the ratio of relative change in electrical resistance R, to the mechanical strain ε. The gauge factor is defined as:

In mathematics, the Weyl character formula in representation theory describes the characters of irreducible representations of compact Lie groups in terms of their highest weights. It was proved by Hermann Weyl. There is a closely related formula for the character of an irreducible representation of a semisimple Lie algebra. In Weyl's approach to the representation theory of connected compact Lie groups, the proof of the character formula is a key step in proving that every dominant integral element actually arises as the highest weight of some irreducible representation. Important consequences of the character formula are the Weyl dimension formula and the Kostant multiplicity formula.

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

The Mattis–Bardeen theory is a theory that describes the electrodynamic properties of superconductivity. It is commonly applied in the research field of optical spectroscopy on superconductors.

Experimental uncertainty analysis is a technique that analyses a derived quantity, based on the uncertainties in the experimentally measured quantities that are used in some form of mathematical relationship ("model") to calculate that derived quantity. The model used to convert the measurements into the derived quantity is usually based on fundamental principles of a science or engineering discipline.

The article Ferromagnetic material properties is intended to contain a glossary of terms used to describe ferromagnetic materials, and magnetic cores.

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Since the 8th and 9th centuries, the sine and other trigonometric functions have been used in Islamic mathematics and astronomy, reforming the production of sine tables. Khwarizmi and Habash al-Hasib later produced a set of trigonometric tables.

References

  1. 1 2 3 4 Turner, Anthony; Nye, James; Betts, Jonathan (2022). A General History of Horology. Oxford University Press. p. 321. ISBN   9780192609366.
  2. 1 2 3 Baker, Gregory L. (2011). Seven Tales of the Pendulum. Oxford University Press. pp. 79–82. ISBN   9780191004841.
  3. 1 2 3 4 5 "Clock". Encyclopaedia Britannica, 11th Ed. Vol. 6. The Encyclopaedia Brittanica Co. 1910. p. 539. Retrieved 7 July 2024.
  4. 1 2 3 4 5 6 7 8 9 10 11 Matthys, Robert J. (2004). Accurate Clock Pendulums. Oxford University Press. pp. 8–10. ISBN   9780198529712.
  5. 1 2 "The total lengths should be inversely proportional to the coefficients of expansion for the metals used" Glasgow, David (1885) Watch and Clock Making, Cassell and Co., London, p.289
  6. 1 2 3 4 Kater, Henry; Lardner, Dionysus (1831). A Treatise on Mechanics. Philadelphia: Carey and Lea.
  7. 1 2 Beckett, Edmund (Lord Grimsthorpe) (1874). A Rudimentary Treatise on Clocks and Watches and Bells, 6th Ed. London: Lockwood & Co. p. 59-60.
  8. 1 2 Glasgow, David (1885). Watch and Clock Making. London: Cassell and Co.
  9. 1 2 3 4 5 Baker, Gregory L.; Blackburn, James A. (2005). The Pendulum: A Case Study in Physics. Oxford University Press. ISBN   9780198567547.

Further reading