Group envy-freeness

Last updated

Group envy-freeness [1] (also called: coalition fairness) [2] is a criterion for fair division. A group-envy-free division is a division of a resource among several partners such that every group of partners feel that their allocated share is at least as good as the share of any other group with the same size. The term is used particularly in problems such as fair resource allocation, fair cake-cutting and fair item allocation.

Contents

Group-envy-freeness is a very strong fairness requirement: a group-envy-free allocation is both envy-free and Pareto efficient, but the opposite is not true.

Definitions

Consider a set of n agents. Each agent i receives a certain allocation Xi (e.g. a piece of cake or a bundle of resources). Each agent i has a certain subjective preference relation <i over pieces/bundles (i.e. means that agent i prefers piece X to piece Y).

Consider a group G of the agents, with its current allocation . We say that group Gprefers a piece Y to its current allocation, if there exists a partition of Y to the members of G: , such that at least one agent i prefers his new allocation over his previous allocation (), and no agent prefers his previous allocation over his new allocation.

Consider two groups of agents, G and H, each with the same number k of agents. We say that group Genvies group H if group G prefers the common allocation of group H (namely ) to its current allocation.

An allocation {X1, ..., Xn} is called group-envy-free if there is no group of agents that envies another group with the same number of agents.

Relations to other criteria

A group-envy-free allocation is also envy-free, since G and H may be groups with a single agent.

A group-envy-free allocation is also Pareto efficient, since G and H may be the entire group of all n agents.

Group-envy-freeness is stronger than the combination of these two criteria, since it applies also to groups of 2, 3, ..., n-1 agents.

Existence

In resource allocation settings, a group-envy-free allocation exists. Moreover, it can be attained as a competitive equilibrium with equal initial endowments. [3] [4] [2]

In fair cake-cutting settings, a group-envy-free allocation exists if the preference relations are represented by positive continuous value measures. I.e., each agent i has a certain function Vi representing the value of each piece of cake, and all such functions are additive and non-atomic. [1]

Moreover, a group-envy-free allocation exists if the preference relations are represented by preferences over finite vector measures. I.e., each agent i has a certain vector-functionVi, representing the values of different characteristics of each piece of cake, and all components in each such vector-function are additive and non-atomic, and additionally the preference relation over vectors is continuous, monotone and convex. [5]

Alternative definition

Aleksandrov and Walsh [6] use the term "group envy-freeness" in a weaker sense. They assume that each group G evaluates its combined allocation as the arithmetic mean of its members' utilities, i.e.:

and evaluates the combined allocation of every other group H as the arithmetic mean of valuations, i.e.:

By their definition, an allocation is g,h-group-envy-free (GEFg,h) if for all groups G of size g and all groups H of size h:

GEF1,1 is equivalent to envy-freeness; GEF1,n is equivalent to proportionality; GEFn,n is trivially satisfied by any allocation. For each g and h, GEFg,h implies GEFg,h+1 and GEFg+1,h. The implications are strict for 3 or more agents; for 2 agents, GEFg,h for all g,h are equivalent to envy-freeness. By this definition, group-envy-freeness does not imply Pareto-efficiency. They define an allocation X as k-group-Pareto-efficient (GPEk) if there is no other allocation Y that is at least as good for all groups of size k, and strictly better for at least one group of size k, i.e., all groups G of size k:

and for at least one groups G of size k:

.

GPE1 is equivalent to Pareto-efficiency. GPEn is equivalent to utilitarian-maximal allocation, since for the grand group G of size n, the utility uG is equivalent to the sum of all agents' utilities. For all k, GPEk+1 implies GPEk. The inverse implication is not true even with two agents. They also consider approximate notions of these fairness and efficiency properties, and their price of fairness.

See also

Related Research Articles

Pareto efficiency or Pareto optimality is a situation where no action or allocation is available that makes one individual better off without making another worse off. The concept is named after Vilfredo Pareto (1848–1923), Italian civil engineer and economist, who used the concept in his studies of economic efficiency and income distribution. The following three concepts are closely related:

There are two fundamental theorems of welfare economics. The first states that in economic equilibrium, a set of complete markets, with complete information, and in perfect competition, will be Pareto optimal. The requirements for perfect competition are these:

  1. There are no externalities and each actor has perfect information.
  2. Firms and consumers take prices as given.

An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation.

Competitive equilibrium is a concept of economic equilibrium, introduced by Kenneth Arrow and Gérard Debreu in 1951, appropriate for the analysis of commodity markets with flexible prices and many traders, and serving as the benchmark of efficiency in economic analysis. It relies crucially on the assumption of a competitive environment where each trader decides upon a quantity that is so small compared to the total quantity traded in the market that their individual transactions have no influence on the prices. Competitive markets are an ideal standard by which other market structures are evaluated.

<span class="mw-page-title-main">Fair cake-cutting</span> Fair division problem

Fair cake-cutting is a kind of fair division problem. The problem involves a heterogeneous resource, such as a cake with different toppings, that is assumed to be divisible – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be unanimously fair – each person should receive a piece believed to be a fair share.

Efficient cake-cutting is a problem in economics and computer science. It involves a heterogeneous resource, such as a cake with different toppings or a land with different coverings, that is assumed to be divisible - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be economically efficient. Several notions of efficiency have been studied:

Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:

Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy.

Efficiency and fairness are two major goals of welfare economics. Given a set of resources and a set of agents, the goal is to divide the resources among the agents in a way that is both Pareto efficient (PE) and envy-free (EF). The goal was first defined by David Schmeidler and Menahem Yaari. Later, the existence of such allocations has been proved under various conditions.

Weller's theorem is a theorem in economics. It says that a heterogeneous resource ("cake") can be divided among n partners with different valuations in a way that is both Pareto-efficient (PE) and envy-free (EF). Thus, it is possible to divide a cake fairly without compromising on economic efficiency.

Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.

Rental harmony is a kind of a fair division problem in which indivisible items and a fixed monetary cost have to be divided simultaneously. The housemates problem and room-assignment-rent-division are alternative names to the same problem.

Random priority (RP), also called Random serial dictatorship (RSD), is a procedure for fair random assignment - dividing indivisible items fairly among people.

A simultaneous eating algorithm(SE) is an algorithm for allocating divisible objects among agents with ordinal preferences. "Ordinal preferences" means that each agent can rank the items from best to worst, but cannot (or does not want to) specify a numeric value for each item. The SE allocation satisfies SD-efficiency - a weak ordinal variant of Pareto-efficiency (it means that the allocation is Pareto-efficient for at least one vector of additive utility functions consistent with the agents' item rankings).

Egalitarian equivalence (EE) is a criterion of fair division. In an egalitarian-equivalent division, there exists a certain "reference bundle" such that each agent feels that his/her share is equivalent to .

Truthful cake-cutting is the study of algorithms for fair cake-cutting that are also truthful mechanisms, i.e., they incentivize the participants to reveal their true valuations to the various parts of the cake.

Round robin is a procedure for fair item allocation. It can be used to allocate several indivisible items among several people, such that the allocation is "almost" envy-free: each agent believes that the bundle he received is at least as good as the bundle of any other agent, when at most one item is removed from the other bundle. In sports, the round-robin procedure is called a draft.

When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.

Fair division among groups is a class of fair division problems, in which the resources are allocated among groups of agents, rather than among individual agents. After the division, all members in each group consume the same share, but they may have different preferences; therefore, different members in the same group might disagree on whether the allocation is fair or not. Some examples of group fair division settings are:

References

  1. 1 2 Berliant, M.; Thomson, W.; Dunz, K. (1992). "On the fair division of a heterogeneous commodity". Journal of Mathematical Economics. 21 (3): 201. doi:10.1016/0304-4068(92)90001-n.
  2. 1 2 Varian, H. R. (1974). "Equity, envy, and efficiency" (PDF). Journal of Economic Theory. 9: 63–91. doi:10.1016/0022-0531(74)90075-1. hdl: 1721.1/63490 .
  3. Vind, K (1971). Lecture notes for Economics. Stanford University.{{cite book}}: CS1 maint: location missing publisher (link)
  4. Schmeidler, D.; Vind, K. (1972). "Fair Net Trades". Econometrica. 40 (4): 637. doi:10.2307/1912958. JSTOR   1912958.
  5. Husseinov, F. (2011). "A theory of a heterogeneous divisible commodity exchange economy". Journal of Mathematical Economics. 47: 54–59. doi:10.1016/j.jmateco.2010.12.001. hdl: 11693/12257 .
  6. Aleksandrov, Martin; Walsh, Toby (2018). "Group Envy Freeness and Group Pareto Efficiency in Fair Division with Indivisible Items". In Trollmann, Frank; Turhan, Anni-Yasmin (eds.). KI 2018: Advances in Artificial Intelligence. Lecture Notes in Computer Science. Vol. 11117. Cham: Springer International Publishing. pp. 57–72. doi:10.1007/978-3-030-00111-7_6. ISBN   978-3-030-00111-7. S2CID   52288825.