Fair division among groups

Last updated

Fair division among groups [1] (or families [2] ) is a class of fair division problems, in which the resources are allocated among groups of agents, rather than among individual agents. After the division, all members in each group consume the same share, but they may have different preferences; therefore, different members in the same group might disagree on whether the allocation is fair or not. Some examples of group fair division settings are:

Contents

In all the above examples, the groups are fixed in advance. In some settings, the groups can be determined ad-hoc, that is, people can be grouped based on their preferences. An example of such a setting is: [4]

Fairness criteria

Common fairness criteria, such as proportionality and envy-freeness, judge the division from the point-of-view of a single agent, with a single preference relation. There are several ways to extend these criteria to fair division among groups.

Unanimous fairness requires that the allocation be considered fair in the eyes of all agents in all groups. For example:

Unanimous fairness is a strong requirement, and often cannot be satisfied.

Aggregate fairness assigns to each group a certain aggregate function, such as: sum, product, arithmetic mean or geometric mean. It requires that the allocation be considered fair according to this aggregate function. For example:

Democratic fairness requires that, in each group, a certain fraction of the agents agree that the division is fair; preferredly this fraction should be at least 1/2. A practical situation in which such requirement may be useful is when two democratic countries agree to divide a certain disputed land among them, and the agreement should be approved by a referendum in both countries.

Unanimous-fairness implies both aggregate-fairness and democratic-fairness. Aggregate-fairness and democratic fairness are independent - none of them implies the other. [2]

Pareto efficiency is another important criterion that is required in addition to fairness. It is defined in the usual way: no allocation is better for at least one individual agent and at least as good for all individual agents.

Results for divisible resources

In the context of fair cake-cutting, the following results are known (where k is the number of groups, and n is the number of agents in all groups together). [2]

The division problem is easier when the agents can be grouped ad-hoc based on their preferences. In this case, there exists a unanimous envy-free connected allocation for any number of groups and any number of agents in each group. [4]

Unanimous proportionality and exact division

In an exact division (also called consensus division), there are n agents, and the goal is to partition the cake into k pieces such that all agents value all pieces at exactly 1/k. It is known that an exact division with n(k-1) always exists. However, even for k=2, finding an exact division with n cuts is FIXP-hard, and finding an approximate exact division with n cuts is PPA-complete (see exact division for more information). It can be proved that unanimous-proportionality is equivalent to consensus division in the following sense: [2]

Results for indivisible items

In the context of fair item allocation, the following results are known.

Unanimous approximate maximin-share fairness: [6]

Unanimous approximate envy-freeness: [7]

Unanimous envy-freenesswith high probability: [10]

Democratic fairness: [11]

Group fair division of items and money

In the context of rental harmony (envy-free division of rooms and rent), the following results are known. [12]

Fair division of ticket lotteries

A practical application of fair division among groups is dividing tickets to parks or other experiences with limited capacity. Often, tickets are divided at random. When people arrive on their own, a simple uniformly-random lottery among all candidates is a fair solution. But people often come in families or groups of friends, who want to enter together. This leads to various considerations in how exactly to design the lottery. The following results are known:

Related Research Articles

An envy-free cake-cutting is a kind of fair cake-cutting. It is a division of a heterogeneous resource ("cake") that satisfies the envy-free criterion, namely, that every partner feels that their allocated share is at least as good as any other share, according to their own subjective valuation.

A proportional division is a kind of fair division in which a resource is divided among n partners with subjective valuations, giving each partner at least 1/n of the resource by his/her own subjective valuation.

Entitlement in fair division describes that proportion of the resources or goods to be divided that a player can expect to receive. In many fair division settings, all agents have equal entitlements, which means that each agent is entitled to 1/n of the resource. But there are practical settings in which agents have different entitlements. Some examples are:

<span class="mw-page-title-main">Fair cake-cutting</span> Fair division problem

Fair cake-cutting is a kind of fair division problem. The problem involves a heterogeneous resource, such as a cake with different toppings, that is assumed to be divisible – it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible. The division should be unanimously fair – each person should receive a piece believed to be a fair share.

Efficient cake-cutting is a problem in economics and computer science. It involves a heterogeneous resource, such as a cake with different toppings or a land with different coverings, that is assumed to be divisible - it is possible to cut arbitrarily small pieces of it without destroying their value. The resource has to be divided among several partners who have different preferences over different parts of the cake, i.e., some people prefer the chocolate toppings, some prefer the cherries, some just want as large a piece as possible, etc. The allocation should be economically efficient. Several notions of efficiency have been studied:

In the theory of fair division, the price of fairness (POF) is the ratio of the largest economic welfare attainable by a division to the economic welfare attained by a fair division. The POF is a quantitative measure of the loss of welfare that society has to take in order to guarantee fairness.

Fair item allocation is a kind of the fair division problem in which the items to divide are discrete rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:

Envy-freeness, also known as no-envy, is a criterion for fair division. It says that, when resources are allocated among people with equal rights, each person should receive a share that is, in their eyes, at least as good as the share received by any other agent. In other words, no person should feel envy.

Utilitarian cake-cutting is a rule for dividing a heterogeneous resource, such as a cake or a land-estate, among several partners with different cardinal utility functions, such that the sum of the utilities of the partners is as large as possible. It is a special case of the utilitarian social choice rule. Utilitarian cake-cutting is often not "fair"; hence, utilitarianism is often in conflict with fair cake-cutting.

Envy-free (EF) item allocation is a fair item allocation problem, in which the fairness criterion is envy-freeness - each agent should receive a bundle that they believe to be at least as good as the bundle of any other agent.

Truthful cake-cutting is the study of algorithms for fair cake-cutting that are also truthful mechanisms, i.e., they incentivize the participants to reveal their true valuations to the various parts of the cake.

Maximin share (MMS) is a criterion of fair item allocation. Given a set of items with different values, the 1-out-of-n maximin-share is the maximum value that can be gained by partitioning the items into parts and taking the part with the minimum value. An allocation of items among agents with different valuations is called MMS-fair if each agent gets a bundle that is at least as good as his/her 1-out-of-n maximin-share. MMS fairness is a relaxation of the criterion of proportionality - each agent gets a bundle that is at least as good as the equal split ( of every resource). Proportionality can be guaranteed when the items are divisible, but not when they are indivisible, even if all agents have identical valuations. In contrast, MMS fairness can always be guaranteed to identical agents, so it is a natural alternative to proportionality even when the agents are different.

Round robin is a procedure for fair item allocation. It can be used to allocate several indivisible items among several people, such that the allocation is "almost" envy-free: each agent believes that the bundle he received is at least as good as the bundle of any other agent, when at most one item is removed from the other bundle. In sports, the round-robin procedure is called a draft.

When allocating objects among people with different preferences, two major goals are Pareto efficiency and fairness. Since the objects are indivisible, there may not exist any fair allocation. For example, when there is a single house and two people, every allocation of the house will be unfair to one person. Therefore, several common approximations have been studied, such as maximin-share fairness (MMS), envy-freeness up to one item (EF1), proportionality up to one item (PROP1), and equitability up to one item (EQ1). The problem of efficient approximately fair item allocation is to find an allocation that is both Pareto-efficient (PE) and satisfies one of these fairness notions. The problem was first presented at 2016 and has attracted considerable attention since then.

Proportional item allocation is a fair item allocation problem, in which the fairness criterion is proportionality - each agent should receive a bundle that they value at least as much as 1/n of the entire allocation, where n is the number of agents.

In economics and computer science, Fractional Pareto efficiency or Fractional Pareto optimality (fPO) is a variant of Pareto efficiency used in the setting of fair allocation of discrete objects. An allocation of objects is called discrete if each item is wholly allocated to a single agent; it is called fractional if some objects are split among two or more agents. A discrete allocation is called Pareto-efficient (PO) if it is not Pareto-dominated by any discrete allocation; it is called fractionally Pareto-efficient (fPO) if it is not Pareto-dominated by any discrete or fractional allocation. So fPO is a stronger requirement than PO: every fPO allocation is PO, but not every PO allocation is fPO.

Online fair division is a class of fair division problems in which the resources, or the people to whom they should be allocated, or both, are not all available when the allocation decision is made. Some situations in which not all resources are available include:

In economics and computer science, the house allocation problem is the problem of assigning objects to people with different preferences, such that each person receives exactly one object. The name "house allocation" comes from the main motivating application, which is assigning dormitory houses to students. Other commonly used terms are assignment problem and one-sided matching. When agents already own houses, the problem is often called a housing market. In house allocation problems, it is assumed that monetary transfers are not allowed; the variant in which monetary transfers are allowed is known as rental harmony.

Fair allocation of items and money is a class of fair item allocation problems in which, during the allocation process, it is possible to give or take money from some of the participants. Without money, it may be impossible to allocate indivisible items fairly. For example, if there is one item and two people, and the item must be given entirely to one of them, the allocation will be unfair towards the other one. Monetary payments make it possible to attain fairness, as explained below.

References

  1. Suksompong, Warut (2018). Resource allocation and decision making for groups (Thesis). OCLC   1050345365.
  2. 1 2 3 4 Segal-Halevi, Erel; Nitzan, Shmuel (December 2019). "Fair cake-cutting among families" (PDF). Social Choice and Welfare. 53 (4): 709–740. doi:10.1007/s00355-019-01210-9. S2CID   1602396.
  3. 1 2 Bade, Sophie; Segal-Halevi, Erel (2023-09-01). "Fairness for multi-self agents". Games and Economic Behavior. 141: 321–336. doi:10.1016/j.geb.2023.06.004. ISSN   0899-8256.
  4. 1 2 Segal-Halevi, Erel; Suksompong, Warut (2 January 2021). "How to Cut a Cake Fairly: A Generalization to Groups". The American Mathematical Monthly. 128 (1): 79–83. arXiv: 2001.03327 . doi:10.1080/00029890.2021.1835338. S2CID   210157034.
  5. Segal-Halevi, Erel; Nitzan, Shmuel (December 2019). "Fair cake-cutting among families" (PDF). Social Choice and Welfare. 53 (4): 709–740. doi:10.1007/s00355-019-01210-9. S2CID   1602396.
  6. Suksompong, Warut (1 March 2018). "Approximate maximin shares for groups of agents". Mathematical Social Sciences. 92: 40–47. arXiv: 1706.09869 . doi:10.1016/j.mathsocsci.2017.09.004. S2CID   3720438.
  7. Kyropoulou, Maria; Suksompong, Warut; Voudouris, Alexandros A. (12 November 2020). "Almost envy-freeness in group resource allocation" (PDF). Theoretical Computer Science. 841: 110–123. doi:10.1016/j.tcs.2020.07.008. S2CID   220546580.
  8. Plaut, Benjamin; Roughgarden, Tim (January 2020). "Almost Envy-Freeness with General Valuations". SIAM Journal on Discrete Mathematics. 34 (2): 1039–1068. arXiv: 1707.04769 . doi:10.1137/19M124397X. S2CID   216283014.
  9. Manurangsi, Pasin; Suksompong, Warut (2022). "Almost envy-freeness for groups: Improved bounds via discrepancy theory". Theoretical Computer Science. 930: 179–195. arXiv: 2105.01609 . doi:10.1016/j.tcs.2022.07.022. S2CID   233714947.
  10. Manurangsi, Pasin; Suksompong, Warut (1 September 2017). "Asymptotic existence of fair divisions for groups". Mathematical Social Sciences. 89: 100–108. arXiv: 1706.08219 . doi:10.1016/j.mathsocsci.2017.05.006. S2CID   47514346.
  11. Segal-Halevi, Erel; Suksompong, Warut (December 2019). "Democratic fair allocation of indivisible goods". Artificial Intelligence. 277: 103167. arXiv: 1709.02564 . doi:10.1016/j.artint.2019.103167. S2CID   203034477.
  12. Ghodsi, Mohammad; Latifian, Mohamad; Mohammadi, Arman; Moradian, Sadra; Seddighin, Masoud (2018). "Rent Division Among Groups". Combinatorial Optimization and Applications. Lecture Notes in Computer Science. Vol. 11346. pp. 577–591. doi:10.1007/978-3-030-04651-4_39. ISBN   978-3-030-04650-7.
  13. 1 2 Arnosti, Nick; Bonet, Carlos (2022). "Lotteries for Shared Experiences". Proceedings of the 23rd ACM Conference on Economics and Computation. pp. 1179–1180. arXiv: 2205.10942 . doi:10.1145/3490486.3538312. ISBN   978-1-4503-9150-4. S2CID   248986158.
  14. Arbiv, Tal; Aumann, Yonatan (28 June 2022). "Fair and Truthful Giveaway Lotteries". Proceedings of the AAAI Conference on Artificial Intelligence. 36 (5): 4785–4792. doi: 10.1609/aaai.v36i5.20405 . S2CID   250288879.