H-matrix (iterative method)

Last updated

In mathematics, an H-matrix is a matrix whose comparison matrix is an M-matrix. It is useful in iterative methods.

Definition: Let A = (aij) be a n × n complex matrix. Then comparison matrix M(A) of complex matrix A is defined as M(A) = αij where αij = −|Aij| for all ij, 1 ≤ i,jn and αij = |Aij| for all i = j, 1 ≤ i,jn. If M(A) is a M-matrix, A is a H-matrix.

Invertible H-matrix guarantees convergence of Gauss–Seidel iterative methods. [1]

See also

Related Research Articles

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones.

In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots of a real-valued function. The most basic version starts with a single-variable function f defined for a real variable x, the function's derivative f, and an initial guess x0 for a root of f. If the function satisfies sufficient assumptions and the initial guess is close, then

<span class="mw-page-title-main">Least squares</span> Approximation method in statistics

The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems by minimizing the sum of the squares of the residuals made in the results of each individual equation.

In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power. It analyzes the power systems in normal steady-state operation.

In mathematics and computing, the Levenberg–Marquardt algorithm, also known as the damped least-squares (DLS) method, is used to solve non-linear least squares problems. These minimization problems arise especially in least squares curve fitting. The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the LMA tends to be slower than the GNA. LMA can also be viewed as Gauss–Newton using a trust region approach.

<span class="mw-page-title-main">Gauss–Newton algorithm</span> Mathematical algorithm

The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function. Since a sum of squares must be nonnegative, the algorithm can be viewed as using Newton's method to iteratively approximate zeroes of the components of the sum, and thus minimizing the sum. In this sense, the algorithm is also an effective method for solving overdetermined systems of equations. It has the advantage that second derivatives, which can be challenging to compute, are not required.

In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel, and is similar to the Jacobi method. Though it can be applied to any matrix with non-zero elements on the diagonals, convergence is only guaranteed if the matrix is either strictly diagonally dominant, or symmetric and positive definite. It was only mentioned in a private letter from Gauss to his student Gerling in 1823. A publication was not delivered before 1874 by Seidel.

In numerical linear algebra, the Jacobi method is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.

In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.

In mathematics, especially linear algebra, an M-matrix is a Z-matrix with eigenvalues whose real parts are nonnegative. The set of non-singular M-matrices are a subset of the class of P-matrices, and also of the class of inverse-positive matrices. The name M-matrix was seemingly originally chosen by Alexander Ostrowski in reference to Hermann Minkowski, who proved that if a Z-matrix has all of its row sums positive, then the determinant of that matrix is positive.

Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method.

In computational chemistry, a constraint algorithm is a method for satisfying the Newtonian motion of a rigid body which consists of mass points. A restraint algorithm is used to ensure that the distance between mass points is maintained. The general steps involved are: (i) choose novel unconstrained coordinates, (ii) introduce explicit constraint forces, (iii) minimize constraint forces implicitly by the technique of Lagrange multipliers or projection methods.

In numerical mathematics, relaxation methods are iterative methods for solving systems of equations, including nonlinear systems.

Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations. There are many similarities to linear least squares, but also some significant differences. In economic theory, the non-linear least squares method is applied in (i) the probit regression, (ii) threshold regression, (iii) smooth regression, (iv) logistic link regression, (v) Box–Cox transformed regressors ().

The Holomorphic Embedding Load-flow Method (HELM)  is a solution method for the power-flow equations of electrical power systems. Its main features are that it is direct and that it mathematically guarantees a consistent selection of the correct operative branch of the multivalued problem, also signalling the condition of voltage collapse when there is no solution. These properties are relevant not only for the reliability of existing off-line and real-time applications, but also because they enable new types of analytical tools that would be impossible to build with existing iterative load-flow methods. An example of this would be decision-support tools providing validated action plans in real time.

In the mathematical discipline of numerical linear algebra, a matrix splitting is an expression which represents a given matrix as a sum or difference of matrices. Many iterative methods depend upon the direct solution of matrix equations involving matrices more general than tridiagonal matrices. These matrix equations can often be solved directly and efficiently when written as a matrix splitting. The technique was devised by Richard S. Varga in 1960.

In linear algebra, a convergent matrix is a matrix that converges to the zero matrix under matrix exponentiation.

In linear algebra, let A = (aij) be a n × n complex matrix. The comparison matrixM(A) = (αij) of complex matrix A is defined as

The Stein-Rosenberg theorem, proved in 1948, states that under certain premises, the Jacobi method and the Gauss-Seidel method are either both convergent, or both divergent. If they are convergent then the Gauss-Seidel is asymptotically faster than the Jacobi method.

References

  1. Zhang, Cheng-yi; Ye, Dan; Zhong, Cong-Lei; SHUANGHUA, SHUANGHUA (2015). "Convergence on Gauss–Seidel iterative methods for linear systems with general H-matrices". The Electronic Journal of Linear Algebra. 30: 843–870. arXiv: 1410.3196 . doi:10.13001/1081-3810.1972 . Retrieved 21 June 2018.