HORTA (mining)

Last updated

HORTA is an underground geographic positioning technology utilized in the mining industry and being considered for extraterrestrial space mining applications. The technology utilizes a gyroscope and an accelerometer, together called an inertial navigation system or INS, to aid in 3D-position determination.

Contents

It was developed by Canadian mining company Inco in the late 1990s based on an earlier technology that had been originally developed for the United States Armed Forces. It provides an automated solution to the problem of positioning and location in underground mines. [1]

The term is a backronym for the Horta from Star Trek , a new species introduced in the Original Series episode "The Devil in the Dark." [2] As Inco uses the term, HORTA stands for Honeywell Ore Retrieval and Tunneling Aid. [1]

A mining vehicle "with a HORTA mounted, can survey much faster and more accurately than manual surveys. It takes the truck 120 minutes to survey a 1.6-km-long drift, recording 1,500 points every 60 cm. This compares with a manual survey of the same distance that takes 180 hours, and records only five points every 6 m. Added benefits from such a detailed survey would be to allow engineers to design more effective ventilation systems, or to regularly check ground stability." [1]

HORTA units may be fitted onto all mobile underground equipment, including drills, [1] so their position may be determined with acceptable engineering accuracy.

See also

Related Research Articles

<span class="mw-page-title-main">Underground hard-rock mining</span> Mining techniques used to excavate hard minerals and gems

Underground hard-rock mining refers to various underground mining techniques used to excavate "hard" minerals, usually those containing metals, such as ore containing gold, silver, iron, copper, zinc, nickel, tin, and lead. It also involves the same techniques used to excavate ores of gems, such as diamonds and rubies. Soft-rock mining refers to the excavation of softer minerals, such as salt, coal, and oil sands.

<span class="mw-page-title-main">Mining engineering</span> Engineering discipline

Mining in the engineering discipline is the extraction of minerals from underneath, open pit, above or on the ground. Mining engineering is associated with many other disciplines, such as mineral processing, exploration, excavation, geology, and metallurgy, geotechnical engineering and surveying. A mining engineer may manage any phase of mining operations, from exploration and discovery of the mineral resources, through feasibility study, mine design, development of plans, production and operations to mine closure.

<span class="mw-page-title-main">Comstock Lode</span> Lode of silver ore in Virginia City, Nevada

The Comstock Lode is a lode of silver ore located under the eastern slope of Mount Davidson, a peak in the Virginia Range in Virginia City, Nevada, which was the first major discovery of silver ore in the United States and named after American miner Henry Comstock.

Falconbridge Limited was a Toronto, Ontario-based natural resources company with operations in 18 countries, involved in the exploration, mining, processing, and marketing of metal and mineral products, including nickel, copper, cobalt, and platinum. It was listed on the TSX and NYSE (FAL), and had revenue of US$6.9 billion in 2005. In August 2006, it was absorbed by Swiss-based mining company Xstrata, which had formerly been a major shareholder.

<span class="mw-page-title-main">Caves of Mars Project</span> Program to assess the best place for research and habitation modules on Mars

The Caves of Mars Project was an early 2000s program funded through Phase II by the NASA Institute for Advanced Concepts to assess the best place to situate the research and habitation modules that a human mission to Mars would require. The final report was published in mid 2004.

<span class="mw-page-title-main">Longwall mining</span> Form of underground coal mining

Longwall mining is a form of underground coal mining where a long wall of coal is mined in a single slice. The longwall panel is typically 3–4 km (1.9–2.5 mi) long and 250–400 m (820–1,310 ft) wide.

<span class="mw-page-title-main">Asteroid mining</span> Exploitation of raw materials from asteroids

Asteroid mining is the hypothetical extraction of materials from asteroids and other minor planets, including near-Earth objects.

<span class="mw-page-title-main">Automated storage and retrieval system</span> Robotic warehouse for physical objects

An automated storage and retrieval system consists of a variety of computer-controlled systems for automatically placing and retrieving loads from defined storage locations. Automated storage and retrieval systems (AS/RS) are typically used in applications where:

<span class="mw-page-title-main">Cave survey</span>

A cave survey is a map of all or part of a cave system, which may be produced to meet differing standards of accuracy depending on the cave conditions and equipment available underground. Cave surveying and cartography, i.e. the creation of an accurate, detailed map, is one of the most common technical activities undertaken within a cave and is a fundamental part of speleology. Surveys can be used to compare caves to each other by length, depth and volume, may reveal clues on speleogenesis, provide a spatial reference for other areas of scientific study and assist visitors with route-finding.

<span class="mw-page-title-main">Track geometry car</span> Automated railway track inspection vehicle

A track geometry car is an automated track inspection vehicle on a rail transport system used to test several parameters of the track geometry without obstructing normal railroad operations. Some of the parameters generally measured include position, curvature, alignment of the track, smoothness, and the crosslevel of the two rails. The cars use a variety of sensors, measuring systems, and data management systems to create a profile of the track being inspected.

X-ray pulsar-based navigation and timing (XNAV) or simply pulsar navigation is a navigation technique whereby the periodic X-ray signals emitted from pulsars are used to determine the location of a vehicle, such as a spacecraft in deep space. A vehicle using XNAV would compare received X-ray signals with a database of known pulsar frequencies and locations. Similar to GPS, this comparison would allow the vehicle to calculate its position accurately (±5 km). The advantage of using X-ray signals over radio waves is that X-ray telescopes can be made smaller and lighter. Experimental demonstrations have been reported in 2018.

<span class="mw-page-title-main">Gravity gradiometry</span> Measurement of variations in Earths gravitational field

Gravity gradiometry is the study and measurement of variations (anomalies) in the Earth's gravity field. The gravity gradient tensor is the spatial rate of change of gravitational acceleration; as acceleration is a vector quantity, with magnitude and three-dimensional direction, the full gravity gradient is a 3x3 tensor.

<span class="mw-page-title-main">Creighton Mine</span> Underground mine in Canada

Creighton Mine is an underground nickel, copper, and platinum-group elements (PGE) mine. It is presently owned and operated by Vale Limited in the city of Greater Sudbury, Ontario, Canada. Open pit mining began in 1901, and underground mining began in 1906. The mine is situated in the Sudbury Igneous Complex (SIC) in its South Range geologic unit. The mine is the source of many excavation-related seismic events, such as earthquakes and rock burst events. It is home to SNOLAB, and is currently the deepest nickel mine in Canada. Expansion projects to deepen the Creighton Mine are currently underway.

<span class="mw-page-title-main">Pyhäsalmi Mine</span>

Pyhäsalmi Mine is the deepest base metal mine in Europe, having a depth of 1,444 metres or 4,738 feet. It is located at the Pyhäjärvi municipality in the south of Northern Ostrobothnia province, Finland. The zinc and copper mine is owned by First Quantum Minerals, a Canadian mining corporation.

<span class="mw-page-title-main">Inertial navigation system</span> Continuously computed dead reckoning

An inertial navigation system (INS) is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Other terms used to refer to inertial navigation systems or closely related devices include inertial guidance system, inertial instrument, inertial measurement unit (IMU) and many other variations. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

<span class="mw-page-title-main">Dashaveyor</span> Automated guideway transit (AGT) system developed during the 1960s and 70s

The Dashaveyor was an automated guideway transit (AGT) system developed during the 1960s and '70s.

Automated mining involves the removal of human labor from the mining process. The mining industry is in the transition towards automation. It can still require a large amount of human capital, particularly in the developing world where labor costs are low so there is less incentive for increasing efficiency. There are two types of automated mining- process and software automation, and the application of robotic technology to mining vehicles and equipment.

The economy of Greater Sudbury, Ontario was dominated by the mining industry for much of the city's history. In recent decades, however, the city has diversified to establish itself as an emerging centre in a variety of industries, including finance, business, tourism, health care, education, government, film and television production, and science and technology research. Many of these industries reflect the city's position as a regional service centre for Northeastern Ontario.

In transport, tunnels can be connected together to form a tunnel network. These can be used in mining to reach ore below ground, in cities for underground rapid transit systems, in sewer systems, in warfare to avoid enemy detection or attacks, as maintenance access routes beneath sites with high ground-traffic such as airports and amusement parks, or to extend public living areas or commercial access while avoiding outdoor weather.

<span class="mw-page-title-main">Geological engineering</span>

Geological engineering is a discipline of engineering concerned with the application of geological science and engineering principles to fields, such as civil engineering, mining, environmental engineering, and forestry, among others. The work of geological engineers often directs or supports the work of other engineering disciplines such as assessing the suitability of locations for civil engineering, environmental engineering, mining operations, and oil and gas projects by conducting geological, geoenvironmental, geophysical, and geotechnical studies. They are involved with impact studies for facilities and operations that affect surface and subsurface environments. The engineering design input and other recommendations made by geological engineers on these projects will often have a large impact on construction and operations. Geological engineers plan, design, and implement geotechnical, geological, geophysical, hydrogeological, and environmental data acquisition. This ranges from manual ground-based methods to deep drilling, to geochemical sampling, to advanced geophysical techniques and satellite surveying. Geological engineers are also concerned with the analysis of past and future ground behaviour, mapping at all scales, and ground characterization programs for specific engineering requirements. These analyses lead geological engineers to make recommendations and prepare reports which could have major effects on the foundations of construction, mining, and civil engineering projects. Some examples of projects include rock excavation, building foundation consolidation, pressure grouting, hydraulic channel erosion control, slope and fill stabilization, landslide risk assessment, groundwater monitoring, and assessment and remediation of contamination. In addition, geological engineers are included on design teams that develop solutions to surface hazards, groundwater remediation, underground and surface excavation projects, and resource management. Like mining engineers, geological engineers also conduct resource exploration campaigns, mine evaluation and feasibility assessments, and contribute to the ongoing efficiency, sustainability, and safety of active mining projects

References