Cave survey

Last updated
A cave survey Grobian survey.jpg
A cave survey

A cave survey is a map of all or part of a cave system, which may be produced to meet differing standards of accuracy depending on the cave conditions and equipment available underground. Cave surveying and cartography, i.e. the creation of an accurate, detailed map, is one of the most common technical activities undertaken within a cave and is a fundamental part of speleology. Surveys can be used to compare caves to each other by length, depth and volume, may reveal clues on speleogenesis, provide a spatial reference for other areas of scientific study and assist visitors with route-finding.

Contents

Traditionally, cave surveys are produced in two-dimensional form due to the confines of print, but given the three-dimensional environment inside a cave, modern techniques using computer aided design are increasingly used to allow a more realistic representation of a cave system.

History

1908 survey of Marble Arch Caves by the Yorkshire Ramblers' Club Marble Arch Survey (Brodrick, H., 1908).png
1908 survey of Marble Arch Caves by the Yorkshire Ramblers' Club

The first known plan of a cave dates from 1546, and was of a man-made cavern in tufa called the Stufe di Nerone (Nero's Oven) in Pozzuoli near Naples in Italy. The first natural cave to be mapped was the Baumannshöhle in Germany, of which a sketch from 1656 survives. [1]

Another early survey dates from before 1680, and was made by John Aubrey of Long Hole in the Cheddar Gorge. It consists of an elevational section of the cave. Numerous other surveys of caves were made in the following years, though most are sketches and are limited in accuracy. The first cave that is likely to have been accurately surveyed with instruments is the Grotte de Miremont in France. This was surveyed by a civil engineer in 1765 and includes numerous cross-sections. Édouard-Alfred Martel was the first person to describe surveying techniques. His surveys were made by having an assistant walk down the passage until they were almost out of sight. Martel would then take a compass bearing to the assistant's light, and measure the distance by pacing up to the assistant. This would equate to a modern-day BCRA Grade 2 survey.

The first cave to have its centreline calculated by a computer is the Fergus River Cave in Ireland, which was plotted by members of the UBSS in 1964. The software was programmed onto a large university mainframe computer and a paper plot was produced. [2]

Methodology

There are many variations to surveying methodology, but most are based on a similar set of steps which haven't changed fundamentally in 250 years, although the instruments (compass and tape) have become smaller and more accurate. Since the late 1990s, digital instruments such as distometers have started to change the process, leading to the advent of fully paperless surveying around 2007. The main variation on the normal methodology detailed below have been devices such as LIDAR and SONAR surveyors that produce a point cloud rather than a series of linked stations. Video-based surveying also exists in prototype form.

Surveying

A survey team begins at a fixed point (such as the cave entrance) and measures a series of consecutive line-of-sight measurements between stations. The stations are temporary fixed locations chosen chiefly for their ease of access and clear sight along the cave passage. In some cases, survey stations may be permanently marked to create a fixed reference point to which to return at a later date.

The measurements taken between the stations include:

Coincident with recording straight-line data, details of passage dimensions, shape, gradual or sudden changes in elevation, the presence or absence of still or flowing water, the location of notable features and the material on the floor are recorded, often by means of a sketch map.

Drawing a line-plot

Later, the cartographer analyzes the recorded data, converting them into two-dimensional measurements by way of geometrical calculations. From them he/she creates a line-plot; a scaled geometrical representation of the path through the cave.

Finalising

The cartographer then draws details around the line-plot, using the additional data of passage dimensions, water flow and floor/wall topography recorded at the time, to produce a completed cave survey. Cave surveys drawn on paper are often presented in two-dimensional plan and/or profile views, while computer surveys may simulate three dimensions. Although primarily designed to be functional, some cavers consider cave surveys as an art form.[ who? ]

Hydrolevelling

Hydrolevelling is an alternative to measuring depth with clinometer and tape that has a long history of use in Russia. [3] The technique is regularly used in building construction for finding two points with the same height, as in levelling a floor. In the simplest case, a tube with both ends open is used, attached to a strip of wood, and the tube is filled with water and the depth at each end marked. In Russia, measuring the depth of caves by hydrolevelling began in the 1970s, and was considered to be the most accurate means of measuring depth despite the difficulties in using the cumbersome equipment of the time. Interest in the method has been revived following the discovery of Voronja on the Arabica Massif in the Caucasus  – currently the world's second deepest cave.

The hydrolevel device used in recent Voronja expeditions comprises a 50-metre (160 ft) transparent tube filled with water, which is coiled or placed on a reel. A rubber glove which acts as a reservoir is placed on one end of the tube, and a metal box with a transparent window is placed on the other. A diver's digital wristwatch with a depth gauge function is submerged in the box. If the rubber glove is placed on one station and the box with the depth gauge is placed on a lower one, then the hydrostatic pressure between the two points depends only on the difference in heights and the density of the water, i.e. the route of the tube does not affect the pressure in the box. Reading the depth gauge gives the apparent depth change between the higher and lower station. Depth changes are 'apparent' because depth gauges are calibrated for sea water, and the hydrolevel is filled with fresh water. Therefore, a coefficient must be determined to convert apparent depth changes to true depth changes. Adding the readings for consecutive pairs of stations gives the total depth of the cave. [3]

Accuracy

The accuracy, or grade, of a cave survey is dependent on the methodology of measurement. A common survey grading system is that created by the British Cave Research Association in the 1960s, which uses a scale of six grades. [4]

BCRA grading system

BCRA gradings for a cave line survey

Grade 1
Sketch of low accuracy where no measurements have been made
Grade 2 (use only if necessary, see note 7)
May be used, if necessary, to describe a sketch that is intermediate in accuracy between Grade 1 & 3
Grade 3
A rough magnetic survey. Horizontal & vertical angles measured to ±2.5 °; distances measured to ±50 cm; station position error less than 50 cm.
Grade 4 (use only if necessary, see note 7)
May be used, if necessary, to describe a survey that fails to attain all the requirements of Grade 5 but is more accurate than a Grade 3 survey.
Grade 5
A Magnetic survey. Horizontal and vertical angles measured to ±1 °; distances should be observed and recorded to the nearest centimetre and station positions identified to less than 10 cm.
Grade 6
A magnetic survey that is more accurate than grade 5, (see note 5).
Grade X
A survey that is based primarily on the use of a theodolite or total station instead of a compass, (see notes 6 and 10 below).
Notes
  1. The above table is a summary, omitting some technical details and definitions; the definitions of the survey grades given above must be read in conjunction with these notes.
  2. In all cases it is necessary to follow the spirit of the definition and not just the letter.
  3. To attain Grade 3 it is necessary to use a clinometer in passages having appreciable slope.
  4. To attain Grade 5 it is essential for instruments to be properly calibrated, and all measurements must be taken from a point within a 10 cm diameter sphere centred on the survey station.
  5. A Grade 6 survey requires the compass to be used at the limit of possible accuracy, i.e. accurate to ±0.5 °; clinometer readings must be to the same accuracy. Station position error must be less than ±2.5 cm, which will require the use of tripods at all stations or other fixed station markers ("roofhooks").
  6. A Grade X survey must include on the drawing notes descriptions of the instruments and techniques used, together with an estimate of the probable accuracy of the survey compared with Grade 3, 5 or 6 surveys.
  7. Grades 2 and 4 are for use only when, at some stage of the survey, physical conditions have prevented the survey from attaining all the requirements for the next higher grade and it is not practical to re-survey.
  8. Caving organisations, etc., are encouraged to reproduce Table 1 and Table 2 in their own publications; permission is not required from BCRA to do so, but the tables must not be reprinted without these notes.
  9. Grade X is only potentially more accurate than Grade 6. It should never be forgotten that the theodolite/Total Station is a complex precision instrument that requires considerable training and regular practice if serious errors are not to be made through its use!
  10. In drawing up, the survey co-ordinates must be calculated and not hand-drawn with scale rule and protractor to obtain Grade 5.

BCRA gradings for recording cave passage detail

Class A
All passage details based on memory.
Class B
Passage details estimated and recorded in the cave.
Class C
Measurements of detail made at survey stations only.
Class D
Measurements of detail made at survey stations and wherever else needed to show significant changes in passage dimensions.
Notes
  1. The accuracy of the detail should be similar to the accuracy of the line.
  2. Normally only one of the following combinations of survey grades should be used:
    • 1A
    • 3B or 3C
    • 5C or 5D
    • 6D
    • XA, XB, XC or XD

Survey error detection

The equipment used to undertake a cave survey continues to improve. The use of computers, inertia systems, and electronic distance finders has been proposed, but few practical underground applications have evolved at present.

Despite these advances, faulty instruments, imprecise measurements, recording errors or other factors may still result in an inaccurate survey, and these errors are often difficult to detect. Some cave surveyors measure each station twice, recording a back-sight to the previous station in the opposite direction. A back-sight compass reading that is different by 180 degrees and a clinometer reading that is the same value but with the reverse direction (positive rather than negative, for example) indicates that the original measurement was accurate.

When a loop within a cave is surveyed back to its starting point, the resulting line-plot should also form a closed loop. Any gap between the first and last stations is called a loop-closure error. If no single error is apparent, one may assume the loop-closure error is due to cumulative inaccuracies, and cave survey software can 'close the loop' by averaging possible errors throughout the loop stations. Loops to test survey accuracy may also be made by surveying across the surface between multiple entrances to the same cave.

The use of a low-frequency cave radio can also verify survey accuracy. A receiving unit on the surface can pinpoint the depth and location of a transmitter in a cave passage by measurement of the geometry of its radio waves. A survey over the surface from the receiver back to the cave entrance forms an artificial loop with the underground survey, whose loop-closure error can then be determined.

In the past, cavers were reluctant to redraw complex cave maps after detecting survey errors. Today, computer cartography can automatically redraw cave maps after data has been corrected.

Surveying software

There are a large number of surveying packages available on various computer platforms, most of which have been developed by cavers with a basis in computer programming. Many of the packages perform particularly well for specific tasks, and as such many cave surveyors will not solely choose one product over another for all cartographic tasks.

A popular program for producing a centerline survey is Survex, which was originally developed by members of the Cambridge University Caving Club for processing survey data from club expeditions to Austria. It was released to the public in 1992. The centerline data can then be exported in various formats and the cave detail drawn in with various other programmes such as AutoCAD, Adobe Illustrator and Inkscape. Other programmes such as 'Tunnel' and Therion have full centerline and map editing capabilities. Therion notably, when it closes survey loops, warps the passages to fit over their length, meaning that entire passages do not have to be redrawn. Unlike Therion's 2D warping capabilities, CaveWhere warps passages in 3D. This includes warping plan and profile sketches. CaveWhere also supports loop closure (using Survex) and provides a user friendly interface for entering and visualizing cave survey data. [5]

Terrestrial LiDAR units are increasing significantly in accuracy and decreasing in price.[ citation needed ] Several Caves have been "scanned" using both "time of flight" and "phase shift" LiDAR units. The differences are in the relative accuracies available to each. The Oregon Caves National Park, was LiDAR scanned in August 2011, as were the Paisley Caves Archaeological dig site in SE Oregon.[ citation needed ] Both were scanned with a FARO Focus Phase shift scanner with +/-2mm accuracy. The Oregon Caves were scanned from the main public entrance to the 110 exit and were loop surveyed to the point of beginning. The data is not yet available for public use, but copies are retained by both the US Park Service and i-TEN Associates in Portland, Oregon.[ citation needed ]

Automated methods

In recent years an underground geographic positioning technology called HORTA has been utilized in the mining industry. The inertial navigation system technology utilizes a gyroscope and an accelerometer to aid in 3D-position determination. [6]

Such automated methods have provided a more than fifty-fold increase in underground surveying productivity with more accurate and finer detail maps as well. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Map</span> Symbolic depiction of relationships

A map is a symbolic depiction emphasizing relationships between elements of some space, such as objects, regions, or themes.

<span class="mw-page-title-main">Galvanometer</span> Instrument to measure electric current

A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely.

Accuracy and precision are two measures of observational error. Accuracy is how close a given set of measurements are to their true value, while precision is how close the measurements are to each other.

<span class="mw-page-title-main">Surveying</span> Science of determining the positions of points and the distances and angles between them

Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. A land surveying professional is called a land surveyor. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designed positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

<span class="mw-page-title-main">Hydrographic survey</span> Science of measurement and description of features which affect maritime activities

Hydrographic survey is the science of measurement and description of features which affect maritime navigation, marine construction, dredging, offshore oil exploration and drilling and related activities. Strong emphasis is placed on soundings, shorelines, tides, currents, seabed and submerged obstructions that relate to the previously mentioned activities. The term hydrography is used synonymously to describe maritime cartography, which in the final stages of the hydrographic process uses the raw data collected through hydrographic survey into information usable by the end user.

<span class="mw-page-title-main">Theodolite</span> Optical surveying instrument

A theodolite is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching.

<span class="mw-page-title-main">Total station</span> Electro-optical instrument used in surveying and building construction

A total station (TS) or total station theodolite (TST) is an electronic/optical instrument used for surveying and building construction. It is an electronic transit theodolite integrated with electronic distance measurement (EDM) to measure both vertical and horizontal angles and the slope distance from the instrument to a particular point, and an on-board computer to collect data and perform triangulation calculations.

<span class="mw-page-title-main">Inclinometer</span> Instrument used to measure the inclination of a surface relative to local gravity

An inclinometer or clinometer is an instrument used for measuring angles of slope, elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines and declines using three different units of measure: degrees, percentage points, and topos. The astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance.

<span class="mw-page-title-main">Levelling</span>

Levelling or leveling is a branch of surveying, the object of which is to establish or verify or measure the height of specified points relative to a datum. It is widely used in geodesy and cartography to measure vertical position with respect to a vertical datum, and in construction to measure height differences of construction artifacts.

<span class="mw-page-title-main">Laser rangefinder</span> Range finding device that uses a laser beam to determine the distance to an object

A laser rangefinder, also known as a laser telemeter, is a rangefinder that uses a laser beam to determine the distance to an object. The most common form of laser rangefinder operates on the time of flight principle by sending a laser pulse in a narrow beam towards the object and measuring the time taken by the pulse to be reflected off the target and returned to the sender. Due to the high speed of light, this technique is not appropriate for high precision sub-millimeter measurements, where triangulation and other techniques are often used.

<span class="mw-page-title-main">Calipers</span> Tool used to measure dimensions of an object

Caliper(s) or calliper(s) are an instrument used to measure the dimensions of an object, generally by placing two movable points of the instrument across the object or span to be measured.

<span class="mw-page-title-main">Real-time kinematic positioning</span> Satellite navigation technique used to enhance the precision of position data

Real-time kinematic positioning (RTK) is the application of surveying to correct for common errors in current satellite navigation (GNSS) systems. It uses measurements of the phase of the signal's carrier wave in addition to the information content of the signal and relies on a single reference station or interpolated virtual station to provide real-time corrections, providing up to centimetre-level accuracy. With reference to GPS in particular, the system is commonly referred to as carrier-phase enhancement, or CPGPS. It has applications in land survey, hydrographic survey, and in unmanned aerial vehicle navigation.

<span class="mw-page-title-main">Diver navigation</span> Underwater navigation by scuba divers

Diver navigation, termed "underwater navigation" by scuba divers, is a set of techniques—including observing natural features, the use of a compass, and surface observations—that divers use to navigate underwater. Free-divers do not spend enough time underwater for navigation to be important, and surface supplied divers are limited in the distance they can travel by the length of their umbilicals and are usually directed from the surface control point. On those occasions when they need to navigate they can use the same methods used by scuba divers.

Global Navigation Satellite System (GNSS) receivers, using the GPS, GLONASS, Galileo or BeiDou system, are used in many applications. The first systems were developed in the 20th century, mainly to help military personnel find their way, but location awareness soon found many civilian applications.

<span class="mw-page-title-main">Topographic Abney level</span> Surveying instrument

An Abney level and clinometer is an instrument used in surveying which consists of a fixed sighting tube, a movable spirit level that is connected to a pointing arm, and a protractor scale. An internal mirror allows the user to see the bubble in the level while sighting a distant target. It can be used as a hand-held instrument or mounted on a Jacob's staff for more precise measurement, and it is small enough to carry in a coat pocket.

Tree height is the vertical distance between the base of the tree and the tip of the highest branch on the tree, and is difficult to measure accurately. It is not the same as the length of the trunk. If a tree is leaning, the trunk length may be greater than the height of the tree. The base of the tree is where the projection of the pith (center) of the tree intersects the existing supporting surface upon which the tree is growing or where the seed sprouted. If the tree is growing on the side of a cliff, the base of the tree is at the point where the pith would intersect the cliff side. Roots extending down from that point would not add to the height of the tree. On a slope this base point is considered as halfway between the ground level at the upper and lower sides of the tree. Tree height can be measured in a number of ways with varying degrees of accuracy.

Tree volume is one of many parameters that are measured to document the size of individual trees. Tree volume measurements serve a variety of purposes, some economic, some scientific, and some for sporting competitions. Measurements may include just the volume of the trunk, or the volume of the trunk and the branches depending on the detail needed and the sophistication of the measurement methodology.

<span class="mw-page-title-main">Therion (software)</span>

Therion is free and open-source cave surveying software designed to process survey data, generate maps and 3D models of caves, and archive the data describing the cave and the history of exploration.

<span class="mw-page-title-main">Underwater survey</span> Inspection or measurement in or of an underwater environment

An underwater survey is a survey performed in an underwater environment or conducted remotely on an underwater object or region. Survey can have several meanings. The word originates in Medieval Latin with meanings of looking over and detailed study of a subject. One meaning is the accurate measurement of a geographical region, usually with the intention of plotting the positions of features as a scale map of the region. This meaning is often used in scientific contexts, and also in civil engineering and mineral extraction. Another meaning, often used in a civil, structural, or marine engineering context, is the inspection of a structure or vessel to compare actual condition with the specified nominal condition, usually with the purpose of reporting on the actual condition and compliance with, or deviations from, the nominal condition, for quality control, damage assessment, valuation, insurance, maintenance, and similar purposes. In other contexts it can mean inspection of a region to establish presence and distribution of specified content, such as living organisms, either to establish a baseline, or to compare with a baseline.

<span class="mw-page-title-main">Underwater exploration</span> Investigating or traveling around underwater for the purpose of discovery

Underwater exploration is the exploration of any underwater environment, either by direct observation by the explorer, or by remote observation and measurement under the direction of the investigators. Systematic, targeted exploration is the most effective method to increase understanding of the ocean and other underwater regions, so they can be effectively managed, conserved, regulated, and their resources discovered, accessed, and used. Less than 10% of the ocean has been mapped in any detail, less has been visually observed, and the total diversity of life and distribution of populations is similarly obscure.

References

  1. Gunn, J. (2003). An Encyclopedia of Caves and Karst Science. Routledge. ISBN   978-1-57958-399-6.
  2. Nicholson, F.H.; Patmore, D.J. (1965). "The Fergus River Cave, Co. Clare, Ireland". UBSS Proceedings. 10 (3): 285.
  3. 1 2 Degtjarev, Alexander; Snetkov, Eugene; Gurjanov, Alexey (July 2007). "Obtaining accurate cave depths by hydrolevelling" (PDF). Compass Points. BCRA Cave Survey Group (38): 8–12. ISSN   1361-8962 . Retrieved 2009-05-02.
  4. "BCRA Surveying Grades". British Cave Research Association . Retrieved 2009-05-02.
  5. Schuchardt, Philip (2013). "Quick 3D Cave maps using Cavewhere" (PDF). 16th International Congress of Speleology.
  6. 1 2 Inco's Innovations [ permanent dead link ], Canadian Mining Journal, April 2000, accessed 2010-12-02. "HORTA unit for determining the geographic position underground. HORTA-Honeywell Ore Retrieval and Tunneling Aid-is a box containing a gyro and an accelerometer, originally developed for the U.S. military, that solves the problem of positioning and location underground."