Helictite

Last updated
Rare "fishtail" helictites in the Caverns of Sonora near Sonora, Texas FishtailHelictites.jpg
Rare "fishtail" helictites in the Caverns of Sonora near Sonora, Texas
A helictite at Treak Cliff Cavern in Derbyshire Helictite at Treak Cavern (close up).JPG
A helictite at Treak Cliff Cavern in Derbyshire

A helictite is a speleothem (cave-formed mineral) found in a limestone cave that changes its axis from the vertical at one or more stages during its growth. Helictites have a curving or angular form that looks as if they were grown in zero gravity. They are most likely the result of capillary forces acting on tiny water droplets, a force often strong enough at this scale to defy gravity.

Contents

Helictites are, perhaps, the most delicate of cave formations. They are usually made of needle-form calcite and aragonite. Helictite forms have been described in several types: ribbon helictites, saws, rods, butterflies, "hands", curly-fries, and "clumps of worms". They typically have radial symmetry. They can be easily crushed or broken by the slightest touch. Because of this, helictites are rarely seen within arm's reach in tourist caves.

Timpanogos Cave National Monument in Utah has one of the largest collections of these formations in the world. Large numbers are also in the Jenolan Caves in Australia and in the Pozalagua Cave in Karrantza, Spain. A remarkable suite of helictites also occurs in Asperge Cave, France. Can also be found in Black Chasm Cavern in California, USA.

Formation

Diagram of dripstone cave structures (helictites are labeled H) Tropfsteine.svg
Diagram of dripstone cave structures (helictites are labeled H)

The growth of helictites is still quite enigmatic. To this day, there has been no satisfactory explanation for how they are formed. Currently, formation by capillary forces is the most likely hypothesis, but another hypothesis based on wind formation is also viable.

Capillary forces

The most likely hypothesis explains helictites as a result of capillary forces. If the helictite has a very thin central tube where the water flows as it does in straws, capillary forces would be able to transport water against gravity. This idea was inspired by some hollow helictites. However, the majority of helictites are not hollow. Despite this, droplets can be drawn to the tips of existing structures and deposit their calcite load almost anywhere thereon. This can lead to the wandering and curling structures seen in many helictites.

Wind

Another hypothesis names the wind in the cave as the main reason for the strange appearance. Drops hanging on a stalactite are blown to one side, so the dripstone grows in that direction. If the wind changes, the direction of growth changes too. However, this hypothesis is very problematic, because wind directions change very often. The wind in caves depends on air pressure changes outside, which in turn depend on the weather. The wind direction changes as often as the weather conditions outside change. But the dripstones grow very slowly – several centimeters in 100 years – meaning that the wind direction would have to stay steady for long periods of time, changing for every fragment of a millimeter of growth. A second problem with this idea is that many caves with helictites have no natural entrance where wind could enter.

Piezoelectric forces

Another hypothesis that has been proposed is that slowly changing geological pressure causing stresses on the crystals at the base alters the piezo electrostatic potential and causes particle deposition to be oriented in some relationship to the prevailing pressure orientation.

Bacterial

A recent hypothesis, which is supported by observation, is that a prokaryotic bacterial film provides a nucleation site for mineralization process. [1]

Helictite growth

Helictites at Jenolan Caves in Australia Helictites at Jenolan Caves.jpg
Helictites at Jenolan Caves in Australia

A helictite starts its growth as a tiny stalactite. The direction of the end of the straw may wander, twist like a corkscrew, or the main part may form normally while small helictites pop out of its side like rootlets or fishhooks. In some caves, helictites cluster together and form bushes as large as six feet tall. These bushes grow from the floor of the cave. When helictites are found on cave floors, they are referred to as heligmites, though there is debate as to whether this is a genuine subcategory.

For an unknown reason, when the chemical composition of the water is slightly altered, the single crystal structure can change from a cylindrical shape to a conical one. In some of these cases, each crystal fits into the prior one like an inverted stack of ice cream cones.

Helictite formations in Wyandotte Caves, Indiana, United States Wyandotte cave8.jpg
Helictite formations in Wyandotte Caves, Indiana, United States

See also

Related Research Articles

Stalactite

A stalactite is a mineral formation that hangs from the ceiling of caves, hot springs, or man-made structures such as bridges and mines. Any material that is soluble and that can be deposited as a colloid, or is in suspension, or is capable of being melted, may form a stalactite. Stalactites may be composed of lava, minerals, mud, peat, pitch, sand, sinter, and amberat. A stalactite is not necessarily a speleothem, though speleothems are the most common form of stalactite because of the abundance of limestone caves.

Aragonite Calcium carbonate polymorph

Aragonite is a carbonate mineral, one of the three most common naturally occurring crystal forms of calcium carbonate, CaCO3 (the other forms being the minerals calcite and vaterite). It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

Stalagmite Elongate mineral formation found on a cave floor

A stalagmite is a type of rock formation that rises from the floor of a cave due to the accumulation of material deposited on the floor from ceiling drippings. Stalagmites are typically composed of calcium carbonate, but may consist of lava, mud, peat, pitch, sand, sinter and amberat.

Speleothem Structure formed in a cave by the deposition of minerals from water

A speleothem is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.

Soda straw

A soda straw is a speleothem in the form of a hollow mineral cylindrical tube. They are also known as tubular stalactites. Soda straws grow in places where water leaches slowly through cracks in rock, such as on the roofs of caves. Soda straws in caves rarely grow more than a few millimetres per year and may average one tenth of a millimetre per year. A soda straw can turn into a stalactite if the hole at the bottom is blocked, or if the water begins flowing on the outside surface of the hollow tube. Soda straws can also form outside the cave environment on exposed concrete surfaces as a type of calthemite, growing significantly faster than those formed on rock.

Jewel Cave National Monument

Jewel Cave National Monument contains Jewel Cave, currently the third longest cave in the world, with 200.3 miles of mapped passageways. It is located approximately 13 miles (21 km) west of the town of Custer in Black Hills of South Dakota. It became a national monument in 1908.

Dolomite (rock) Sedimentary carbonate rock that contains a high percentage of the mineral dolomite

Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. In old USGS publications, it was referred to as magnesian limestone, a term now reserved for magnesium-deficient dolomites or magnesium-rich limestones. Dolomite has a stoichiometric ratio of nearly equal amounts of magnesium and calcium. Most dolomite rock formed as a magnesium replacement of limestone or lime mud before lithification. Dolomite rock is resistant to erosion and can either contain bedded layers or be unbedded. It is less soluble than limestone in weakly acidic groundwater, but it can still develop solution features (karst) over time. Dolomite rock can act as an oil and natural gas reservoir.

Flowstone

Flowstones are composed of sheetlike deposits of calcite or other carbonate minerals, formed where water flows down the walls or along the floors of a cave. They are typically found in "solution caves", in limestone, where they are the most common speleothem. However, they may form in any type of cave where water enters that has picked up dissolved minerals. Flowstones are formed via the degassing of vadose percolation waters.

Cave popcorn Small nodes of calcite, aragonite or gypsum that form on surfaces in caves

Cave popcorn, or coralloids, are small nodes of calcite, aragonite or gypsum that form on surfaces in caves, especially limestone caves. They are a common type of speleothem.

Cave of the Winds (Colorado)

Cave of the Winds is a cave in the Pikes Peak region of Colorado. It is located just west of Colorado Springs on U.S. Highway 24, near the Manitou Cliff Dwellings. Tours of the complex of caves are given daily.

Cave of the Mounds

Cave of the Mounds, a natural limestone cave located near Blue Mounds, Wisconsin, United States, is named for two nearby hills called the Blue Mounds. It is located in the southern slope of the east hill. The cave's beauty comes from its many varieties of mineral formations called speleothems. The Chicago Academy of Sciences considers the Cave of the Mounds to be "the significant cave of the upper Midwest" because of its beauty, and it is promoted as the "jewel box" of major American caves. In 1987, the United States Department of the Interior and the National Park Service designated the cave as a National Natural Landmark.

Anthodite

Anthodites (Greek ἄνθος ánthos, "flower", -ode, adjectival combining form, -ite adjectival suffix) are speleothems (cave formations) composed of long needle-like crystals situated in clusters which radiate outward from a common base. The "needles" may be quill-like or feathery. Most anthodites are made of the mineral aragonite (a variety of calcium carbonate, CaCO3), although some are composed of gypsum (CaSO4·2H2O).

Frostwork Snowflake-like speleothem

In geology, frostwork is a type of speleothem with acicular ("needle-like") growths almost always composed of aragonite or calcite replaced aragonite. It is a variety of anthodite. Frostwork can also be made of opal or gypsum. In some caves frostwork may grow on top of cave popcorn or boxwork.

Rimstone

Rimstone, also called gours, is a type of speleothem in the form of a stone dam. Rimstone is made up of calcite and other minerals that build up in cave pools. The formation created, which looks like stairs, often extends into flowstone above or below the original rimstone. Often, rimstone is covered with small, micro-gours on horizontal surfaces. Rimstone basins may form terraces that extend over hundreds of feet, with single basins known up to 200 feet long from Tham Xe Biang Fai in Laos.

Cisternerne

Cisternerne is an exhibition space for contemporary art in Copenhagen, Denmark with one annual site-specific total experience - and a wide range of events during the year. Cisternerne is an integral part of the Frederiksberg Museums (Frederiksbergmuseerne) where the singularity of its architecture and atmosphere remains a core attraction.

Castellana Caves

The Castellana Caves are a karst cave system located in the municipality of Castellana Grotte, in the Metropolitan City of Bari, Apulia, southern Italy.

Solutional cave

A solutional cave, solution cave, or karst cave is a cave usually formed in the soluble rock limestone. It is the most frequently occurring type of cave. It can also form in other rocks, including chalk, dolomite, marble, salt beds, and gypsum.

Cave of El Soplao

El Soplao is a cave located in the municipalities of Rionansa, Valdáliga and Herrerías in Cantabria, Spain. It is considered unique for the quality and quantity of geological formations (speleothems) in its 17 miles length, 6 of which are open to the public. In it are formations such as helíctites and curtains. Its formation dates back to the Mesozoic, in particular the Cretaceous period 240 million years ago. The entrance is at 540 metres in the Sierra Soplao Arnero.

Calcite rafts Cave-crystallized calcite crusts

Calcite crystals form on the surface of quiescent bodies of water, even when the bulk water is not supersaturated with respect to calcium carbonate. The crystals grow, attach to one other and appear to be floating rafts of a white, opaque material. The floating materials have been referred to as calcite rafts or "leopard spots".

Calthemite Secondary calcium carbonate deposit growing under man-made structures

Calthemite is a secondary deposit, derived from concrete, lime, mortar or other calcareous material outside the cave environment. Calthemites grow on or under, man-made structures and mimic the shapes and forms of cave speleothems, such as stalactites, stalagmites, flowstone etc. Calthemite is derived from the Latin calx "lime" + Latin < Greek théma, "deposit" meaning ‘something laid down’, and the Latin –ita < Greek -itēs – used as a suffix indicating a mineral or rock. The term "speleothem", due to its definition can only be used to describe secondary deposits in caves and does not include secondary deposits outside the cave environment.

References

  1. Tisato, N. et al., “Microbial mediation of complex subterranean mineral structures”, Sci. Rep. 5, 15525; doi: 10.1038/srep15525 (2015)