Boxwork

Last updated
Boxwork in Wind Cave, South Dakota A557, Wind Cave National Park, South Dakota, USA, 2004.jpg
Boxwork in Wind Cave, South Dakota

In geology, boxwork is defined as a honeycomb-like structure that can form in some fractured or jointed sedimentary rocks. If the fractures in the host rock are mineralized, they can become more resistant to weathering than the surrounding rock, and subsequent erosion can produce boxwork structures. In mining geology, boxwork is a set of (typically) quartz-lined cavities, retaining the shape of the dissolved ore minerals, in gossans. In classical geology or mineralogy these mineral casts would not be called boxwork, but would instead be called pseudomorphs, or epimorphs. In cave geology, boxwork is an uncommon type of mineral structure, or speleogen (similar to a speleothem, but formed by erosion rather than accretion), occasionally found in caves and erosive environments.

Contents

Caves

According to KellerLynn, "Boxwork is a speleogen, forming when bedrock between preexisting calcite veins were preferentially weathered away as the cave developed." [1]

Boxwork is commonly composed of thin blades of the mineral calcite that project from cave walls or ceilings that intersect one another at various angles, forming a box-like or honeycomb pattern. The boxwork fins once filled cracks in the rock before the host cave formed. As the walls of the cave began to dissolve away, the more resistant vein and crack fillings did not, or at least dissolved at a slower rate than the surrounding rock, leaving the calcite fins projecting from the cave surfaces.

Some of the most extensive boxwork deposits in the world are found in Wind Cave, Wind Cave National Park in South Dakota, US. These boxwork deposits consist of calcite, along with manganese and dolomite that precipitated in fractured host limestone. The limestone preferentially dissolved, leaving a crystalline calcite boxwork behind. Other outstanding examples occur in Cody Caves, Cody Caves Provincial Park in British Columbia, Canada. Boxwork can also be seen at Jewel Cave National Monument (near Wind Cave), and at Innerspace Caverns near Georgetown, Texas.

Related Research Articles

<span class="mw-page-title-main">Cave</span> Natural underground space large enough for a human to enter

A cave or cavern is a natural void in the ground, specifically a space large enough for a human to enter. Caves often form by the weathering of rock and often extend deep underground. The word cave can refer to smaller openings such as sea caves, rock shelters, and grottos, that extend a relatively short distance into the rock and they are called exogene caves. Caves which extend further underground than the opening is wide are called endogene caves.

<span class="mw-page-title-main">Karst</span> Topography from dissolved soluble rocks

Karst is a topography formed from the dissolution of soluble carbonate rocks such as limestone, dolomite, and gypsum. It is characterized by features like poljes above and drainage systems with sinkholes and caves underground. It has also been documented for more weathering-resistant rocks, such as quartzite, given the right conditions. Subterranean drainage may limit surface water, with few to no rivers or lakes. However, in regions where the dissolved bedrock is covered or confined by one or more superimposed non-soluble rock strata, distinctive karst features may occur only at subsurface levels and can be totally missing above ground.

<span class="mw-page-title-main">Limestone</span> Sedimentary rocks made of calcium carbonate

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

<span class="mw-page-title-main">Stalactite</span> Elongated mineral formation hanging down from a cave ceiling

A stalactite is a mineral formation that hangs from the ceiling of caves, hot springs, or man-made structures such as bridges and mines. Any material that is soluble and that can be deposited as a colloid, or is in suspension, or is capable of being melted, may form a stalactite. Stalactites may be composed of lava, minerals, mud, peat, pitch, sand, sinter, and amberat. A stalactite is not necessarily a speleothem, though speleothems are the most common form of stalactite because of the abundance of limestone caves.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and subsequent cementation of material

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Calcite</span> Calcium carbonate mineral

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

<span class="mw-page-title-main">Concretion</span> Compact mass formed by precipitation of mineral cement between particles

A concretion is a hard, compact mass formed by the precipitation of mineral cement within the spaces between particles, and is found in sedimentary rock or soil. Concretions are often ovoid or spherical in shape, although irregular shapes also occur. The word 'concretion' is derived from the Latin concretio "(act of) compacting, condensing, congealing, uniting", itself from con meaning 'together' and crescere meaning "to grow". Concretions form within layers of sedimentary strata that have already been deposited. They usually form early in the burial history of the sediment, before the rest of the sediment is hardened into rock. This concretionary cement often makes the concretion harder and more resistant to weathering than the host stratum.

<span class="mw-page-title-main">Speleothem</span> Structure formed in a cave by the deposition of minerals from water

A speleothem is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.

<span class="mw-page-title-main">Vug</span> Small to medium-sized cavity inside rock

A vug, vugh, or vugg is a small- to medium-sized cavity inside rock. It may be formed through a variety of processes. Most commonly, cracks and fissures opened by tectonic activity are partially filled by quartz, calcite, and other secondary minerals. Open spaces within breccias formed by an ancient collapse are another important source of vugs.

<span class="mw-page-title-main">Hoodoo (geology)</span> Tall, thin spire of relatively soft rock usually topped by harder rock

A hoodoo is a tall, thin spire of rock formed by erosion. Hoodoos typically consist of relatively soft rock topped by harder, less easily eroded stone that protects each column from the elements. They generally form within sedimentary rock and volcanic rock formations.

<span class="mw-page-title-main">Wind Cave National Park</span> National park in South Dakota, United States

Wind Cave National Park is an American national park located 10 miles (16 km) north of the town of Hot Springs in western South Dakota. Established on January 3, 1903 by President Theodore Roosevelt, it was the sixth national park in the U.S. and the first cave to be designated a national park anywhere in the world. The cave is notable for its calcite formations known as box work, as well as its frostwork. Approximately 95 percent of the world's discovered box work formations are found in Wind Cave. The cave is recognized as the densest cave system in the world, with the greatest passage volume per cubic mile. Wind Cave is the seventh longest cave in the world with 154.2 miles (248.16 km) of explored cave passageways and the third longest cave in the United States. Above ground, the park includes the largest remaining natural mixed-grass prairie in the United States.

<span class="mw-page-title-main">Jewel Cave National Monument</span> Cave in the Black Hills of South Dakota, USA

Jewel Cave National Monument contains Jewel Cave, currently the fifth longest cave in the world, with 217.32 miles of mapped passageways. It is located approximately 13 miles (21 km) west of the town of Custer in Black Hills of South Dakota. It became a national monument in 1908.

<span class="mw-page-title-main">Dolomite (rock)</span> Sedimentary carbonate rock that contains a high percentage of the mineral dolomite

Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. It occurs widely, often in association with limestone and evaporites, though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). The first geologist to distinguish dolomite rock from limestone was Belsazar Hacquet in 1778.

<span class="mw-page-title-main">Gossan</span> Intensely oxidized, weathered or decomposed rock

Gossan is intensely oxidized, weathered or decomposed rock, usually the upper and exposed part of an ore deposit or mineral vein. In the classic gossan or iron cap all that remains is iron oxides and quartz, often in the form of boxworks. In other cases, quartz and iron oxides, limonite, goethite, and jarosite, exist as pseudomorphs, replacing the pyrite and primary ore minerals. Frequently, gossan appears as a red "stain" against the background rock and soil, due to the abundance of oxidized iron; the gossan may be a topographic positive area due to the abundance of erosion-resistant quartz and iron oxides. Although most gossans are red, orange, or yellow, black gossans from manganese oxides such as pyrolusite, manganite, and especially psilomelane form at the oxidized portion of manganese-rich mineral deposits.

<span class="mw-page-title-main">Frostwork</span> Snowflake-like speleothem

In geology, frostwork is a type of speleothem with acicular ("needle-like") growths almost always composed of aragonite or calcite replaced aragonite. It is a variety of anthodite. Frostwork can also be made of opal or gypsum. In some caves frostwork may grow on top of cave popcorn or boxwork.

<span class="mw-page-title-main">Solutional cave</span> Type of cave

A solutional cave, solution cave, or karst cave is a cave usually formed in the soluble rock limestone. It is the most frequently occurring type of cave. It can also form in other rocks, including chalk, dolomite, marble, salt beds, and gypsum.

<span class="mw-page-title-main">Concrete degradation</span> Damage to concrete affecting its mechanical strength and its durability

Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damages are caused by the formation of expansive products produced by various chemical reactions, by aggressive chemical species present in groundwater and seawater, or by microorganisms. Other damaging processes can also involve calcium leaching by water infiltration and different physical phenomena initiating cracks formation and propagation. All these detrimental processes and damaging agents adversely affects the concrete mechanical strength and its durability.

A fin is a geological formation that is a narrow, residual wall of hard sedimentary rock that remains standing after surrounding rock has been eroded away along parallel joints or fractures. Fins are formed when a narrow butte or plateau develops many vertical, parallel cracks. There are two main modes of following erosion. The first is when water flows along joints and fractures and opens them wider and wider, eventually causing erosion. The second is where the rock type (stratum) is harder and more erosion resistant than neighboring rocks, causing the weaker rock to fall away.

İnsuyu Cave is a show cave situated near Burdur in southwestern Turkey. Being over 500 m (1,600 ft) in length, it was discovered in 1952 and opened to public in 1965. A second cave beyond the show cave was later discovered. The lakes inside the both caves are in danger of drying due to excessive drilling of wells in the valley above. However, efforts are underway to reverse the process.

<span class="mw-page-title-main">Derbyshire Dome</span> Geological formation of the Derbyshire Peak District

The Derbyshire Dome is a geological formation across mid-Derbyshire in England.

References

  1. KellerLynn, K. (2009). Wind Cave National Park Geologic Resources Inventory Report, Natural Resource Report NPS/NRPC/GRD/NRR-2009/087. Denver: National Park Service. p. 18.