The Hall Technique is a minimally-invasive treatment for decayed baby back (molar) teeth. Decay is sealed under preformed (stainless steel) crowns, avoiding injections and drilling. It is one of a number of biologically oriented strategies for managing dental decay.
The technique has an evidence base showing that it is acceptable to children, parents and dentists and it is preferred over standard filling techniques, due to the ease of application and overall patient comfort as young patients do not have to undergo traumatic injections. Preformed metal crowns are now recommended as the optimum restoration for managing carious primary molars. There are multiple randomised controlled trials that have shown the Hall Technique to be superior to other methods for managing decay in baby teeth, [1] but there is a lack of evidence to conclude that the Hall Technique is superior to placing preformed metal crowns in a conventional manner. [2] Initial fears over the potential problem with sealing caries (cavities) into teeth being that the caries process might only be slowed, rather than arrested and that the caries might still progress, leading to pain and infection later. [3] [4] This problem has not been realised with one study showing long-term data beyond five years, to when the baby teeth are lost, with fewer problems from the tooth with the crown.
Crowns placed using the Hall Technique have better long term outcomes (pain/infection and need for replacement) compared with standard fillings. [5] [6] [7]
The technique has been used and found particularly valuable in a developing country with little access to dental services, or resources to support such services. [8] It is also utilized in modern dental practices, as many parents and patients prefer treatment options that are minimally invasive and that help eliminate the need for sedation.
Preformed metal crowns have been used for restoring primary molars since the 1950s. Literature suggests preformed crowns placed on carious primary molar teeth reduce risk of major failure or pain in the long term compared to fillings. There is also evidence to suggest that fitting crowns using the Hall Technique reduces patient discomfort at the time of treatment in comparison to conventional fillings. It can also help reduce the overall time a patient spends in the dental chair due to the relatively simple and quick procedure when compared with traditional method of stainless steel crown (SSC) application. [9]
The Hall Technique is named after Dr. Norna Hall, a dentist working in Scotland, who has developed a simplified technique where the crown is simply cemented over the carious primary molar, with no local anaesthesia, caries removal, or tooth preparation of any kind. [10] The traditional method for management of dental caries has evolved from the exclusive domain of techniques based on complete caries removal prior to tooth restoration. Norna Hall used pre-formed crowns and cemented over carious primary molars using a glass-ionomer luting cement, with no caries removal, tooth preparation, or local anaesthesia.
The Hall Technique has been included in a guideline of the Scottish Dental Clinical Effectiveness Programme (SDCEP) [11] and has helped to drive change in how dentists manage decay in primary teeth from the traditional invasive surgical approach to the less-invasive biological management of decay. [12] [13] [14] [15] [16]
Clinical trials have shown the technique to be effective; however it is not an easy, quick-fix solution to the problem of carious primary molars. The technique is not suited to every tooth, child or clinician, but it can be an effective method of managing carious primary molars. The Hall Technique should not be used when there are clinical or radiographic signs and symptoms of irreversible pulpitis or dental abscess. Radiographically, there should be a clear band of dentine between the carious lesion and pulp for a Hall Technique to be suitable.
Baby teeth are known as primary teeth or deciduous teeth. Biologically oriented strategies for managing dental decay are considered by their proponents to have advantages for child patients receiving dental care as the techniques are less invasive and often avoid having to use local anaesthesia and drilling. They are also less destructive and potentially damaging for primary teeth. Five randomised control trials with children, on decayed primary teeth, have been carried out looking at incomplete, or no removal of decay. These have looked at how much pain and infection or repeated treatment biological techniques (including the Hall Technique) compare to other treatment techniques including complete caries removal. These "minimal intervention" approaches reduce some of the adverse consequences associated with carrying out restorative treatment: conservation of tooth structure and integrity, maintenance of maximum pulpal floor dentinal thickness, which reduces the impact on pulpal health; [17] reduced pulp exposure, and less need for local anaesthesia if no vital dentine is being removed, which has been shown to reduce children’s reported discomfort. [18] [19]
A Cochrane systematic review [20] has compared biologically oriented strategies (stepwise, partial and no-caries removal), with complete caries removal for managing decay in both primary and permanent teeth. Eight trials of 934 patients (1372 teeth) with outcomes reported for 1191 teeth were included in the analyses. The conclusion of the review was that for symptomless and vital teeth, biologically oriented strategies had clinical advantages over complete caries removal in the management of dentinal caries. Not only were there no differences in restoration longevity or in the numbers of teeth (or patients) experiencing pulpal pathology (pain or infection), but there were significantly less pulp exposures. For partial caries removal in primary teeth, this was a risk ratio of 0.24 [0.06,0.90], when caries were not completely removed.
The Hall technique can also be used with permanent first molars in some cases where prognosis is poor, such as where first permanent molars are hypomineralised, carious with poor prognosis but to be maintained until full eruption of second molars, or for cuspal coverage of endodontically treated teeth in minors with compliance issues preventing full coverage crown preparation. [21]
Hall Technique stainless steel crowns (SSC) are indicated for primary molars in the following situations:
Hall Technique stainless steel crowns are contraindicated in the following instances:
The Hall Technique sometimes requires several appointments to allow separation of the teeth in order to place the preformed crown to be fitted with no additional tooth removal or anaesthetic.
Diagnostics and radiographs will be required initially. Once it has been established that the Hall Technique is indicated the following stages will be likely to occur.
To enable the stainless steel crown to be placed on the tooth, there must be sufficient space between the teeth. If this space is not currently available, orthodontic separators may be placed between the tooth indicated for the Hall Technique and adjacent teeth (see image 1). [26] If the placement is impaired due to interproximal breakdown a temporary restorative material may be used to build up the contact point to allow the effective placement of separators. [27] However, temporary restorative material is not a common practice of the Hall Technique, and case selection appropriateness should be considered. The separators are generally placed 3–5 days prior to the placement of the stainless steel crown to space to be created. [26] The clinician will provide advice on this procedure and how to proceed if these fall out prior to the next appointment.
The stainless steel crowns are selected by tooth type, location and size (see image 2). The tooth will be measured to identify the most suitable size of stainless steel crown. [26] The clinician will try the stainless steel crown prior to its cementation, to ensure that it fits correctly, and establish if an alternative size or contouring of the stainless steel crown is required. When placing the stainless steel crown within the mouth, the airways will generally be protected by placing gauze around the site, or the clinician may secure the stainless steel with tape/Elastoplast. [26] Once a correct size and fit is established, the crown may be adhered to the tooth. The stainless steel crown is secured to the tooth by partially filling the stainless steel crown with a self-curing glass ionomer cement and then placing over the tooth. [26] The stainless steel crown should "click" securely into place. [26] The patient is required to bite firmly onto a cotton roll or bite stick to secure it in the correct position whilst it sets. [26] The excess of glass ionomer cement will be wiped off or removed with knotted floss from between the interproximal contact, and a sickle probe from the buccal gingival sulcus on the buccal and lingual/palatal surfaces. [22]
At follow-up appointments the Hall Technique crown will be assessed clinically and radiographically when required. [26] The tooth will still be able to exfoliate naturally, and the tooth should exfoliate with the crown in place. However, if the patient experiences pain/discomfort after the initial few days, they should consult their dental professional. A dental professional should also be consulted if the crown falls off, as this will prevent the management of the decay.
Human teeth function to mechanically break down items of food by cutting and crushing them in preparation for swallowing and digesting. As such, they are considered part of the human digestive system. Humans have four types of teeth: incisors, canines, premolars, and molars, which each have a specific function. The incisors cut the food, the canines tear the food and the molars and premolars crush the food. The roots of teeth are embedded in the maxilla or the mandible and are covered by gums. Teeth are made of multiple tissues of varying density and hardness.
Tooth decay, also known as cavities or caries, is the breakdown of teeth due to acids produced by bacteria. The cavities may be a number of different colors, from yellow to black. Symptoms may include pain and difficulty eating. Complications may include inflammation of the tissue around the tooth, tooth loss and infection or abscess formation. Tooth regeneration is an ongoing stem cell–based field of study that aims to find methods to reverse the effects of decay; current methods are based on easing symptoms.
Dental products are specially fabricated materials, designed for use in dentistry. There are many different types of dental products, and their characteristics vary according to their intended purpose.
Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure supported by dental implants. They are of two broad types—direct and indirect—and are further classified by location and size. A root canal filling, for example, is a restorative technique used to fill the space where the dental pulp normally resides.
The pulp is the connective tissue, nerves, blood vessels, and odontoblasts that comprise the innermost layer of a tooth. The pulp's activity and signalling processes regulate its behaviour.
Dental sealants are a dental treatment intended to prevent tooth decay. Teeth have recesses on their biting surfaces; the back teeth have fissures (grooves) and some front teeth have cingulum pits. It is these pits and fissures that are most vulnerable to tooth decay because food and bacteria stick in them and because they are hard-to-clean areas. Dental sealants are materials placed in these pits and fissures to fill them in, creating a smooth surface which is easy to clean. Dental sealants are mainly used in children who are at higher risk of tooth decay, and are usually placed as soon as the adult molar teeth come through.
In dentistry, a crown or a dental cap is a type of dental restoration that completely caps or encircles a tooth or dental implant. A crown may be needed when a large dental cavity threatens the health of a tooth. Some dentists will also finish root canal treatment by covering the exposed tooth with a crown. A crown is typically bonded to the tooth by dental cement. They can be made from various materials, which are usually fabricated using indirect methods. Crowns are used to improve the strength or appearance of teeth and to halt deterioration. While beneficial to dental health, the procedure and materials can be costly.
Deciduous teeth or primary teeth, also informally known as baby teeth, milk teeth, or temporary teeth, are the first set of teeth in the growth and development of humans and other diphyodonts, which include most mammals but not elephants, kangaroos, or manatees, which are polyphyodonts. Deciduous teeth develop during the embryonic stage of development and erupt during infancy. They are usually lost and replaced by permanent teeth, but in the absence of their permanent replacements, they can remain functional for many years into adulthood.
Dentinogenesis imperfecta (DI) is a genetic disorder of tooth development. It is inherited in an autosomal dominant pattern, as a result of mutations on chromosome 4q21, in the dentine sialophosphoprotein gene (DSPP). It is one of the most frequently occurring autosomal dominant features in humans. Dentinogenesis imperfecta affects an estimated 1 in 6,000-8,000 people.
Early childhood caries (ECC), formerly known as nursing bottle caries, baby bottle tooth decay, night bottle mouth and night bottle caries, is a disease that affects teeth in children aged between birth and 71 months. ECC is characterized by the presence of 1 or more decayed, missing, or filled tooth surfaces in any primary tooth. ECC has been shown to be a very common, transmissible bacterial infection, usually passed from the primary caregiver to the child. The main bacteria responsible for dental cavities are Streptococcus mutans (S.mutans) and Lactobacillus. There is also evidence that supports that those who are in lower socioeconomic populations are at greater risk of developing ECC.
A glass ionomer cement (GIC) is a dental restorative material used in dentistry as a filling material and luting cement, including for orthodontic bracket attachment. Glass-ionomer cements are based on the reaction of silicate glass-powder and polyacrylic acid, an ionomer. Occasionally water is used instead of an acid, altering the properties of the material and its uses. This reaction produces a powdered cement of glass particles surrounded by matrix of fluoride elements and is known chemically as glass polyalkenoate. There are other forms of similar reactions which can take place, for example, when using an aqueous solution of acrylic/itaconic copolymer with tartaric acid, this results in a glass-ionomer in liquid form. An aqueous solution of maleic acid polymer or maleic/acrylic copolymer with tartaric acid can also be used to form a glass-ionomer in liquid form. Tartaric acid plays a significant part in controlling the setting characteristics of the material. Glass-ionomer based hybrids incorporate another dental material, for example resin-modified glass ionomer cements (RMGIC) and compomers.
Concrescence is an uncommon developmental condition of teeth where the cementum overlying the roots of at least two teeth fuse together without the involvement of dentin. Usually, two teeth are involved with the upper second and third molars being most commonly fused together. The prevalence ranges 0.04–0.8% in permanent teeth, with the incidence being highest in the posterior maxilla.
Pulpotomy is a minimally invasive procedure performed in children on a primary tooth with extensive caries but without evidence of root pathology. The minimally invasive, endodontic techniques of vital pulp therapy (VPT) are based on improved understanding of the capacity of pulp tissues to heal and regenerate plus the availability of advanced endodontic materials. During caries removal, this results in a carious or mechanical pulp exposure from the cavity. During pulpotomy, the inflamed/diseased pulp tissue is removed from the coronal pulp chamber of the tooth, leaving healthy pulp tissue which is dressed with a long-term clinically successful medicament that maintains the survival of the pulp and promotes repair. There are various types of medicament placed above the vital pulp such as Buckley's Solution of formocresol, ferric sulfate, calcium hydroxide or mineral trioxide aggregate (MTA). MTA is a more recent material used for pulpotomies with a high rate of success, better than formocresol or ferric sulfate. It is also recommended to be the preferred pulpotomy agent in the future. After the coronal pulp chamber is filled, the tooth is restored with a filling material that seals the tooth from microleakage, such as a stainless steel crown which is the most effective long-term restoration. However, if there is sufficient remaining supporting tooth structure, other filling materials such as amalgam or composite resin can provide a functional alternative when the primary tooth has a life span of two years or less. The medium- to long-term treatment outcomes of pulpotomy in symptomatic permanent teeth with caries, especially in young people, indicate that pulpotomy can be a potential alternative to root canal therapy (RCT).
Minimal intervention (MI) dentistry is a modern dental practice designed around the principal aim of preservation of as much of the natural tooth structure as possible. It uses a disease-centric philosophy that directs attention to first control and management of the disease that causes tooth decay—dental caries—and then to relief of the residual symptoms it has left behind—the decayed teeth. The approach uses similar principles for prevention of future caries, and is intended to be a complete management solution for tooth decay.
Enamel hypoplasia is a defect of the teeth in which the enamel is deficient in quantity, caused by defective enamel matrix formation during enamel development, as a result of inherited and acquired systemic condition(s). It can be identified as missing tooth structure and may manifest as pits or grooves in the crown of the affected teeth, and in extreme cases, some portions of the crown of the tooth may have no enamel, exposing the dentin. It may be generalized across the dentition or localized to a few teeth. Defects are categorized by shape or location. Common categories are pit-form, plane-form, linear-form, and localised enamel hypoplasia. Hypoplastic lesions are found in areas of the teeth where the enamel was being actively formed during a systemic or local disturbance. Since the formation of enamel extends over a long period of time, defects may be confined to one well-defined area of the affected teeth. Knowledge of chronological development of deciduous and permanent teeth makes it possible to determine the approximate time at which the developmental disturbance occurred. Enamel hypoplasia varies substantially among populations and can be used to infer health and behavioural impacts from the past. Defects have also been found in a variety of non-human animals.
Pulp capping is a technique used in dental restorations to protect the dental pulp, after it has been exposed, or nearly exposed during a cavity preparation, from a traumatic injury, or by a deep cavity that reaches the center of the tooth, causing the pulp to die. Exposure of the pulp causes pulpitis. The ultimate goal of pulp capping or stepwise caries removal is to protect a healthy dental pulp, and avoid the need for root canal therapy.
Silver diammine fluoride (SDF), also known as silver diamine fluoride in most of the dental literature, is a topical medication used to treat and prevent dental caries and relieve dentinal hypersensitivity. It is a colorless or blue-tinted, odourless liquid composed of silver, ammonium and fluoride ions at a pH of 10.4 or 13. Ammonia compounds reduce the oxidative potential of SDF, increase its stability and helps to maintain a constant concentration over a period of time, rendering it safe for use in the mouth. Silver and fluoride ions possess antimicrobial properties and are used in the remineralization of enamel and dentin on teeth for preventing and arresting dental caries.
Molar incisor hypomineralisation (MIH) is a type of enamel defect affecting, as the name suggests, the first molars and incisors in the permanent dentition. MIH is considered a worldwide problem with a global prevalence of 12.9% and is usually identified in children under 10 years old. This developmental condition is caused by the lack of mineralisation of enamel during its maturation phase, due to interruption to the function of ameloblasts. Peri- and post-natal factors including premature birth, certain medical conditions, fever and antibiotic use have been found to be associated with development of MIH. Recent studies have suggested the role of genetics and/or epigenetic changes to be contributors of MIH development. However, further studies on the aetiology of MIH are required because it is believed to be multifactorial.
Pediatric crowns are dental crowns that provide full coverage for primary teeth. They can be made of different materials including stainless steel, polycarbonate, zirconium, or composite resin.
Atraumatic restorative treatment (ART) is a method for cleaning out tooth decay from teeth using only hand instruments and placing a filling. It does not use rotary dental instruments to prepare the tooth and can be performed in settings with no access to dental equipment. No drilling or local anaesthetic injections are required. ART is considered a conservative approach, not only because it removes the decayed tissue with hand instruments, avoiding removing more tissue than necessary which preserves as much tooth structure as possible, but also because it avoids pulp irritation and minimises patient discomfort. ART can be used for small, medium and deep cavities caused by dental caries.