Hardystonite

Last updated
Hardystonite
Hardystonite-Clinohedrite-Calcite-170573.jpg
Hardystonite is fluorescing blue in this Franklin Furnace specimen. Red is calcite, and green is willemite (size: 7.0 × 6.0 × 3.2 cm)
General
Category Sorosilicates
Formula
(repeating unit)
Ca2ZnSi2O7
IMA symbol Hdy [1]
Strunz classification 9.BB.10
Dana classification55.4.2.2
Crystal system Tetragonal
Crystal class Scalenohedral (42m)
H-M symbol: (4 2m)
Space group P421m
Unit cell a = 7.8287(16) Å
c = 5.0140(2) Å; Z = 2
Identification
ColorLight brownish white, pale greyish-white, very pale pink
Crystal habit Massive granular
Cleavage [001] good, [100] and [110] fair
Tenacity Brittle
Mohs scale hardness3–4
Luster Vitreous, resinous, greasy, dull
Diaphaneity Transparent to translucent
Specific gravity 3.396–3.443
Optical propertiesUniaxial (−)
Refractive index nω = 1.672 nε = 1.661
Ultraviolet fluorescence Purple to violet blue in short wave ultraviolet light
Alters toHydrothermal alteration to clinohedrite
References [2] [3] [4]

Hardystonite is a rare calcium zinc silicate mineral first described from the Franklin, New Jersey, U.S. zinc deposits. [2] It often contains lead, which was detrimental to the zinc smelting process, so it was not a useful ore mineral. [5] Like many of the famous Franklin minerals, hardystonite responds to short wave ultraviolet (254 nm wavelength) light, emitting a fluorescence from dark purple to bright violet blue. In daylight, it is white to gray to light pink in color, sometimes with a vitreous or greasy luster. It is very rarely found as well formed crystals, and these are usually rectangular in appearance and rock-locked. [6]

Hardystonite in plain light, same sample as in fluorescent light image above right Hardystonite-Clinohedrite-Calcite-170572.jpg
Hardystonite in plain light, same sample as in fluorescent light image above right

Hardystonite has a chemical composition of Ca2ZnSi2O7. It is frequently found with willemite (fluoresces green), calcite (fluoresces red), and clinohedrite (fluoresces orange). Hardystonite can be found altered to clinohedrite CaZn(SiO4)·H2O through direct hydrothermal alteration. [6] Other minerals often associated with hardystonite are franklinite, diopside, andradite garnet, and esperite (fluoresces yellow).

It was first described in 1899 by J.E. Wolff, when the New Jersey Zinc Company mines were located in what was called Franklin Furnace, in Hardyston Township, New Jersey. [6]

Related Research Articles

<span class="mw-page-title-main">Aurichalcite</span> Basic carbonate of zinc and copper

Aurichalcite is a carbonate mineral, usually found as a secondary mineral in copper and zinc deposits. Its chemical formula is (Zn,Cu)5(CO3)2(OH)6. The zinc to copper ratio is about 5:4. Copper (Cu2+) gives aurichalcite its green-blue colors.

<span class="mw-page-title-main">Tephroite</span>

Tephroite is the manganese endmember of the olivine group of nesosilicate minerals with the formula Mn2SiO4. A solid solution series exists between tephroite and its analogues, the group endmembers fayalite and forsterite. Divalent iron or magnesium may readily replace manganese in the olivine crystal structure.

<span class="mw-page-title-main">Adamite</span> Zinc arsenate hydroxide mineral

Adamite is a zinc arsenate hydroxide mineral, Zn2AsO4OH. It is a mineral that typically occurs in the oxidized or weathered zone above zinc ore occurrences. Pure adamite is colorless, but usually it possess yellow color due to Fe compounds admixture. Tints of green also occur and are connected with copper substitutions in the mineral structure. Olivenite is a copper arsenate that is isostructural with adamite and there is considerable substitution between zinc and copper resulting in an intermediate called cuproadamite. Zincolivenite is a recently discovered mineral being an intermediate mineral with formula CuZn(AsO4)(OH). Manganese, cobalt, and nickel also substitute in the structure. An analogous zinc phosphate, tarbuttite, is known.

<span class="mw-page-title-main">Willemite</span> Nesosilicate mineral

Willemite is a zinc silicate mineral and a minor ore of zinc. It is highly fluorescent (green) under shortwave ultraviolet light. It occurs in a variety of colors in daylight, in fibrous masses and apple-green gemmy masses. Troostite is a variant in which part of the zinc is partly replaced by manganese, it occurs in solid brown masses.

<span class="mw-page-title-main">Esperite</span>

Esperite is a rare complex calcium lead zinc silicate (PbCa3Zn4(SiO4)4) related to beryllonite and trimerite that used to be called calcium larsenite. It was named in honor of Esper F. Larsen Jr. (1879–1961), petrologist of Harvard University.

<span class="mw-page-title-main">Franklin Furnace</span>

Franklin Furnace, also known as the Franklin Mine, is a famous mineral location for rare zinc, iron, manganese minerals in old mines in Franklin, Sussex County, New Jersey, United States. This locale produced more species of minerals and more different fluorescent minerals than any other location. The mineral association (assemblage) from Franklin includes willemite, zincite and franklinite.

<span class="mw-page-title-main">Vesuvianite</span> Silicate mineral

Vesuvianite, also known as idocrase, is a green, brown, yellow, or blue silicate mineral. Vesuvianite occurs as tetragonal crystals in skarn deposits and limestones that have been subjected to contact metamorphism. It was first discovered within included blocks or adjacent to lavas on Mount Vesuvius, hence its name. Attractive-looking crystals are sometimes cut as gemstones. Localities which have yielded fine crystallized specimens include Mount Vesuvius and the Ala Valley near Turin, Piedmont.

<span class="mw-page-title-main">Gahnite</span>

Gahnite, ZnAl2O4, is a rare mineral belonging to the spinel group. It forms octahedral crystals which may be green, blue, yellow, brown or grey. It often forms as an alteration product of sphalerite in altered massive sulphide deposits such as at Broken Hill, Australia. Other occurrences include Falun, Sweden where it is found in pegmatites and skarns; and, in the United States, Charlemont, Massachusetts; Spruce Pine, North Carolina; White Picacho district, Arizona; Topsham, Maine; and Franklin, New Jersey.

<span class="mw-page-title-main">Legrandite</span>

Legrandite is a rare zinc arsenate mineral, Zn2(AsO4)(OH)·(H2O).

<span class="mw-page-title-main">Clinohedrite</span>

Clinohedrite is a rare silicate mineral. Its chemical composition is a hydrous calcium-zinc silicate; CaZn(SiO4)·H2O. It crystallizes in the monoclinic system and typically occurs as veinlets and fracture coatings. It is commonly colorless, white to pale amethyst in color. It has perfect cleavage and the crystalline habit has a brilliant luster. It has a Mohs hardness of 5.5 and a specific gravity of 3.28–3.33.

Jarosewichite is a rare manganese arsenate mineral with formula: Mn2+3Mn3+(AsO4)(OH)6. It was first described in Franklin, New Jersey which is its only reported occurrence. Its chemical composition and structure are similar to chlorophoenicite. This mineral is orthorhombic with 2/m2/m2/m point group. Its crystals are prismatic or barrel-shaped. The color of jarosewichite is dark red to black. It has subvitreous luster of fracture surfaces and reddish-orange streak. This mineral occurs with flinkite, franklinite, andradite and cahnite.

<span class="mw-page-title-main">Jerrygibbsite</span>

Jerrygibbsite is a rare silicate mineral with the chemical formula (Mn,Zn)9(SiO4)4(OH)2. Jerrygibbsite was originally discovered by Pete J. Dunn in 1984, who named it after mineralogist Gerald V. Gibbs. It has only been reported from the type locality of Franklin Furnace, New Jersey, United States, and in Namibia's Otjozondjupa region. Jerrygibbsite is member of the leucophoenite family of the humite group. It is always found with these two minerals. It is a dimorph of sonolite.

<span class="mw-page-title-main">Hodgkinsonite</span>

Hodgkinsonite is a rare zinc manganese silicate mineral Zn2MnSiO4(OH)2. It crystallizes in the monoclinic system and typically forms radiating to acicular prismatic crystals with variable color from pink, yellow-red to deep red. Hodgkinsonite was discovered in 1913 by H. H. Hodgkinson, for whom it is named in Franklin, New Jersey, and it is only found in that area.

<span class="mw-page-title-main">Sterling Hill Mining Museum</span> United States historic place

The Sterling Hill Mine, now known as the Sterling Hill Mining Museum, is a former zinc mine in Ogdensburg, Sussex County, New Jersey, United States. It was the last working underground mine in New Jersey. It closed in 1986, and became a museum in 1989. Along with the nearby Franklin Mine, it is known for its variety of minerals, especially the fluorescent varieties. It was added to the National Register of Historic Places in 1991.

<span class="mw-page-title-main">Bustamite</span>

Bustamite is a calcium manganese inosilicate (chain silicate) and a member of the wollastonite group. Magnesium, zinc and iron are common impurities substituting for manganese. Bustamite is the high-temperature polymorph of CaMnSi2O6 and johannsenite is the low temperature polymorph. The inversion takes place at 830 °C (1,530 °F), but may be very slow.
Bustamite could be confused with light-colored rhodonite or pyroxmangite, but both these minerals are biaxial (+) whereas bustamite is biaxial (−).

<span class="mw-page-title-main">Kanoite</span>

Kanoite is a light pinkish brown silicate mineral that is found in metamorphic rocks. It is an inosilicate and has a chemical formula of (Mg,Mn2+)2Si2O6. It is a member of pyroxene group and clinopyroxene subgroup.

<span class="mw-page-title-main">Leucophoenicite</span>

Leucophoenicite is a mineral with formula Mn7(SiO4)3(OH)2. Generally brown to red or pink in color, the mineral gets its name from the Greek words meaning "pale purple-red". Leucophoenicite was discovered in New Jersey, US and identified as a new mineral in 1899.

Franklinphilite is a phyllosilicate of the stilpnomelane group. Known from only two localities It was found exclusively from the Franklin and Sterling Hill mines in Franklin, Sussex County, New Jersey. until 2013, when a locality in Wales was confirmed

Hendricksite is a member of the trioctahedral micas group. The mineral was named by Clifford Frondel and Jun Ito in honor of Sterling Brown Hendricks, who studied micas. It was approved in 1966 by the IMA.

<span class="mw-page-title-main">Johnbaumite</span>

Johnbaumite is a calcium arsenate hydroxide mineral. It was first described in 1980, where it appeared in Franklin Township, Somerset County, New Jersey. Johnbaumite was discovered at Harstigen mine in Sweden in the 19th century, but it was described as svabite.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 http://www.mindat.org/min-1818.html Mindat
  3. http://www.webmineral.com/data/Hardystonite.shtml Webmineral data
  4. Handbook of Mineralogy
  5. Palache, Charles (1935). "The minerals of Franklin and Sterling Hill, Sussex County, New Jersey" (PDF). Geological Survey Professional Paper. 180: 122–123. doi:10.3133/PP180. ISSN   0096-0446. Wikidata   Q58144929.
  6. 1 2 3 Dunn, Pete J. Franklin and Sterling Hill, New Jersey: the world's most magnificent mineral deposits. Dr. Pete J. Dunn, 2004.