Harold Exton

Last updated

Harold Exton is a mathematician at University of Central Lancashire (called Preston Polytechnic while he was there) working on hypergeometric functions, who introduced the Hahn–Exton q-Bessel function.

University of Central Lancashire

The University of Central Lancashire is a public university based in the city of Preston, Lancashire, England. It has its roots in The Institution For The Diffusion Of Useful Knowledge founded in 1828. Subsequently, known as Harris Art College, then Preston Polytechnic, then Lancashire Polytechnic, in 1992 it was granted university status by the Privy Council. The university is the 19th largest in the UK in terms of student numbers.

In mathematics, the Gaussian or ordinary hypergeometric function2F1(a,b;c;z) is a special function represented by the hypergeometric series, that includes many other special functions as specific or limiting cases. It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation.

In mathematics, the Hahn–Exton q-Bessel function or the third Jackson q-Bessel function is a q-analog of the Bessel function, and satisfies the Hahn-Exton q-difference equation. This function was introduced by Hahn (1953) in a special case and by Exton (1983) in general.

Related Research Articles

In mathematics, a q-analog of a theorem, identity or expression is a generalization involving a new parameter q that returns the original theorem, identity or expression in the limit as q → 1. Typically, mathematicians are interested in q-analogs that arise naturally, rather than in arbitrarily contriving q-analogs of known results. The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century.

In mathematics, basic hypergeometric series, or hypergeometric q-series, are q-analogue generalizations of generalized hypergeometric series, and are in turn generalized by elliptic hypergeometric series. A series xn is called hypergeometric if the ratio of successive terms xn+1/xn is a rational function of n. If the ratio of successive terms is a rational function of qn, then the series is called a basic hypergeometric series. The number q is called the base.

In the theory of special functions in mathematics, the Horn functions are the 34 distinct convergent hypergeometric series of order two, enumerated by Horn (1931). They are listed in. B. C. Carlson revealed a problem with the Horn function classification scheme.

In 1893 Giuseppe Lauricella defined and studied four hypergeometric series FA, FB, FC, FD of three variables. They are :

In combinatorial mathematics, a q-exponential is a q-analog of the exponential function, namely the eigenfunction of a q-derivative. There are many q-derivatives, for example, the classical q-derivative, the Askey-Wilson operator, etc. Therefore, unlike the classical exponentials, q-exponentials are not unique. For example, is the q-exponential corresponding to the classical q-derivative while are eigenfunctions of the Askey-Wilson operators.

In q-analog theory, the Jackson integral series in the theory of special functions that expresses the operation inverse to q-differentiation.

In mathematics, the Askey–Wilson polynomials are a family of orthogonal polynomials introduced by Askey and Wilson (1985) as q-analogs of the Wilson polynomials. They include many of the other orthogonal polynomials in 1 variable as special or limiting cases, described in the Askey scheme. Askey–Wilson polynomials are the special case of Macdonald polynomials for the non-reduced affine root system of type, and their 4 parameters a, b, c, d correspond to the 4 orbits of roots of this root system.

In mathematics, the q-Charlier polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the Al-Salam–Chihara polynomialsQn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Chihara (1976). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14.8) give a detailed list of the properties of Al-Salam–Chihara polynomials.

In mathematics, the Kampé de Fériet function is a two-variable generalization of the generalized hypergeometric series, introduced by Joseph Kampé de Fériet.

In mathematics, the little q-Jacobi polynomialspn(x;a,b;q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Hahn (1949). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the continuous q-Jacobi polynomialsP(α,β)
n
(x|q), introduced by Askey & Wilson (1985), are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the affine q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Carlitz and Hodges. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the continuous big q-Hermite polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the continuous q-Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the little q-Laguerre polynomialspn(x;a|q) or Wall polynomialsWn(x; b,q) are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme closely related to a continued fraction studied by Wall (1941). Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the q-Meixner–Pollaczek polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the q-Meixner polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

In mathematics, the quantum q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

References

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.

Mathematical Reviews is a journal published by the American Mathematical Society (AMS) that contains brief synopses, and in some cases evaluations, of many articles in mathematics, statistics, and theoretical computer science. The AMS also publishes an associated online bibliographic database called MathSciNet which contains an electronic version of Mathematical Reviews and additionally contains citation information for over 3.5 million items as of 2018.