A heart rate monitor (HRM) is a personal monitoring device that allows one to measure/display heart rate in real time or record the heart rate for later study. It is largely used to gather heart rate data while performing various types of physical exercise. Measuring electrical heart information is referred to as electrocardiography (ECG or EKG).
Medical heart rate monitoring used in hospitals is usually wired and usually multiple sensors are used. Portable medical units are referred to as a Holter monitor. Consumer heart rate monitors are designed for everyday use and do not use wires to connect.
Early models consisted of a monitoring box with a set of electrode leads which attached to the chest. The first wireless EKG heart rate monitor was invented in 1977 by Polar Electro as a training aid for the Finnish National Cross Country Ski team. As "intensity training" became a popular concept in athletic circles in the mid-80s, retail sales of wireless personal heart monitors started in 1983. [1]
Modern heart rate monitors commonly use one of two different methods to record heart signals (electrical and optical). Both types of signals can provide the same basic heart rate data, using fully automated algorithms to measure heart rate, such as the Pan-Tompkins algorithm. [2]
ECG (Electrocardiography) sensors measure the bio-potential generated by electrical signals that control the expansion and contraction of heart chambers, typically implemented in medical devices.
PPG (Photoplethysmography) sensors use light-based technology to measure the blood volume controlled by the heart's pumping action.
The electrical monitors consist of two elements: a monitor/transmitter, which is worn on a chest strap, and a receiver. When a heartbeat is detected, a radio signal is transmitted, which the receiver uses to display/determine the current heart rate. This signal can be a simple radio pulse or a unique coded signal from the chest strap (such as Bluetooth, ANT, or other low-power radio links). Newer technology prevents one user's receiver from using signals from other nearby transmitters (known as cross-talk interference) or eavesdropping. Note, that the older Polar 5.1 kHz radio transmission technology is usable underwater. Both Bluetooth and Ant+ use the 2.4 GHz radio band, which cannot send signals underwater.
More recent devices use optics to measure heart rate by shining light from an LED through the skin and measuring how it scatters off blood vessels. In addition to measuring the heart rate, some devices using this technology are able to measure blood oxygen saturation (SpO2). Some recent optical sensors can also transmit data as mentioned above.
Newer devices such as cell phones or watches can be used to display and/or collect the information. Some devices can simultaneously monitor heart rate, oxygen saturation, and other parameters. These may include sensors such as accelerometers, gyroscopes, and GPS to detect speed, location and distance. [3] In recent years, it has been common for smartwatches to include heart rate monitors, which has greatly increased in popularity. [4] Some smartwatches, smart bands and cell phones often use PPG sensors. [5]
Garmin (Venu Sq 2 and Lily*), Polar Electro (Polar H9, Polar H10, and Polar Verity Sense), [6] Suunto, Samsung Galaxy Watch (Galaxy Watch 5 and Galaxy Watch 6*), Google (Pixel Watch 2*), Spade and Company, Vital Fitness Tracker**, Apple Watch (Series 7**, Series 9*, Apple Watch SE*, Apple Watch Ultra 2*), Mobvoi (TicWatch Pro 5*) and Fitbit (Versa 3** and Versa 4*) are vendors selling consumer heart rate products. Most companies use their own proprietary heart rate algorithms. [7] [8]
The newer, wrist based heart rate monitors have achieved almost identical levels of accuracy as their chest strap counterparts [9] with independent tests showing up to 95% accuracy, but sometimes more than 30% error can persist for several minutes. [10] [ better source needed ] Optical devices can be less accurate when used during vigorous activity, [11] or when used underwater.
Currently, heart rate variability is less available on optical devices. [12] Apple introduced HRV data collection to the Apple Watch devices in 2018. [13] Fitbit started offering HRV monitoring on their devices starting from the Fitbit Sense, released in 2020. [14]
A wearable computer, also known as a body-borne computer, is a computing device worn on the body. The definition of 'wearable computer' may be narrow or broad, extending to smartphones or even ordinary wristwatches.
Electrocardiography is the process of producing an electrocardiogram, a recording of the heart's electrical activity through repeated cardiac cycles. It is an electrogram of the heart which is a graph of voltage versus time of the electrical activity of the heart using electrodes placed on the skin. These electrodes detect the small electrical changes that are a consequence of cardiac muscle depolarization followed by repolarization during each cardiac cycle (heartbeat). Changes in the normal ECG pattern occur in numerous cardiac abnormalities, including:
In medicine, a Holter monitor is a type of ambulatory electrocardiography device, a portable device for cardiac monitoring for at least 24 hours.
Polar Electro Oy is a Finnish manufacturer of sports training computers, particularly known for developing the world's first wireless heart rate monitor.
Electro-optical sensors are electronic detectors that convert light, or a change in light, into an electronic signal. These sensors are able to detect electromagnetic radiation from the infrared up to the ultraviolet wavelengths. They are used in many industrial and consumer applications, for example:
Cardiac monitoring generally refers to continuous or intermittent monitoring of heart activity to assess a patient's condition relative to their cardiac rhythm. Cardiac monitoring is usually carried out using electrocardiography, which is a noninvasive process that records the heart's electrical activity and displays it in an electrocardiogram. It is different from hemodynamic monitoring, which monitors the pressure and flow of blood within the cardiovascular system. The two may be performed simultaneously on critical heart patients. Cardiac monitoring for ambulatory patients is known as ambulatory electrocardiography and uses a small, wearable device, such as a Holter monitor, wireless ambulatory ECG, or an implantable loop recorder. Data from a cardiac monitor can be transmitted to a distant monitoring station in a process known as telemetry or biotelemetry.
Fitbit is a line of wireless-enabled wearable technology, physical fitness monitors and activity trackers such as smartwatches, pedometers and monitors for heart rate, quality of sleep, and stairs climbed as well as related software. It operated as an American consumer electronics and fitness company from 2007 to 2021.
Wearable technology is any technology that is designed to be used while worn. Common types of wearable technology include smartwatches and smartglasses. Wearable electronic devices are often close to or on the surface of the skin, where they detect, analyze, and transmit information such as vital signs, and/or ambient data and which allow in some cases immediate biofeedback to the wearer.
A smartwatch is a portable wearable computer that resembles a wristwatch. Most modern smartwatches are operated via a touchscreen, and rely on mobile apps that run on a connected device in order to provide core functions.
An activity tracker is an electronic device or app that measures and collects data about an individual's movements and physical responses, towards the goal of monitoring and improving their health, fitness or psychological wellness over time.
The Samsung Gear 2 and Samsung Gear 2 Neo are smartwatches produced by Samsung Electronics. Unveiled on February 22, 2014 at Mobile World Congress, the Gear 2 line is a successor to the Samsung Galaxy Gear.
Wireless ambulatory electrocardiography (ECG) is a type of ambulatory electrocardiography with recording devices that use wireless technology, such as Bluetooth and smartphones, for at-home cardiac monitoring (monitoring of heart rhythms). These devices are generally recommended to people who have been previously diagnosed with arrhythmias and want to have them monitored, or for those who have suspected arrhythmias and need to be monitored over an extended period of time in order to be diagnosed.
LifeBEAM, founded in 2011, is an artificial-intelligence wearables technology company. The technology was originally developed for monitoring pilots, astronauts and special forces through sensors in their helmets. It was then expanded to consumer fitness products, including artificially intelligent wearables, such as Vi.
AliveCor is a medical device and AI company that develops ECG hardware and software compatible with consumer mobile devices to enable remote heart rhythm monitoring and detection of abnormal heart rhythms, or arrhythmias. AliveCor was founded in 2011 and is headquartered in Mountain View, California, the United States.
Bioinstrumentation or Biomedical Instrumentation is an application of biomedical engineering which focuses on development of devices and mechanics used to measure, evaluate, and treat biological systems. The goal of biomedical instrumentation focuses on the use of multiple sensors to monitor physiological characteristics of a human or animal for diagnostic and disease treatment purposes. Such instrumentation originated as a necessity to constantly monitor vital signs of Astronauts during NASA's Mercury, Gemini, and Apollo missions.
CardiacSense is a developer of a wearable technology for continuous cardiac arrhythmia detection and vital signs monitoring. CardiacSense is based in Caesarea, Israel.
A pulse watch, also known as a pulsometer or pulsograph, is an individual monitoring and measuring device with the ability to measure heart or pulse rate. Detection can occur in real time or can be saved and stored for later review. The pulse watch measures electrocardiography data while the user is performing tasks, whether it be simple daily tasks or intense physical activity. The pulse watch functions without the use of wires and multiple sensors. This makes it useful in health and medical settings where wires and sensors may be an inconvenience. Use of the device is also common in sport and exercise environments where individuals are required to measure and monitor their biometric data.
Sleep tracking is the process of monitoring a person's sleep, most commonly through measuring inactivity and movement. A device that tracks a person's sleep is called a sleep tracker. Sleep tracking may be beneficial in diagnosing sleep disorders. As sleep abnormalities are also symptoms of mental illness or relapsing psychotic disorders, it may also be beneficial in diagnosing mental disorders and psychotic disorders as well.
NeuroKit ("nk") is an open source toolbox for physiological signal processing. The most recent version, NeuroKit2, is written in Python and is available from the PyPI package repository. As of June 2022, the software was used in 94 scientific publications. NeuroKit2 is presented as one of the most popular and contributor-friendly open-source software for neurophysiology based on the number of downloads, the number of contributors, and other GitHub metricsa.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)