Heather J. Kulik | |
---|---|
Alma mater | Cooper Union B.E. (2004) Massachusetts Institute of Technology Ph.D. (2009) |
Scientific career | |
Institutions | Massachusetts Institute of Technology |
Thesis | First-principles transition-metal catalysis : efficient and accurate approaches for studying enzymatic systems (2009) |
Academic advisors | Judith Klinman, Todd Martinez |
Website | hjkgrp |
Heather J. Kulik is an American computational materials scientist and engineer who is the Lammot Du Pont Professor of Chemical Engineering at the Massachusetts Institute of Technology. [1] Her research considers the computational design of new materials and the use of artificial intelligence to predict material properties.
Kulik earned her bachelor's degree in chemical engineering at Cooper Union in 2004. She moved to Massachusetts Institute of Technology for her graduate studies, where she joined the department of materials science and engineering and worked under the supervision of Nicola Marzari. [2] During her doctoral research, she introduced a Hubbard U term to density functional theory calculations, which improved the study of transition metal complexes. [3] Density functional theory allows for the prediction and study of new materials with limited computational cost. Amongst these materials, Kulik concentrated on transition metal complexes, as their highly localized electrons make the unphysical decollimation that occurs in the simplifications of DFT inappropriate. [3] She graduated in 2009 with her Ph.D. in materials science and engineering.
Kulik then conducted postdoctoral research with Felice Lightstone at Lawrence Livermore National Laboratory. She then worked alongside Todd Martínez at Stanford University and Judith Klinman at University of California, Berkeley on the large-scale electronic structures of biomolecules. [4]
In 2013, Kulik joined the faculty at Massachusetts Institute of Technology as the Joseph R. Mares Career Development Chair. [4] She specializes in computational modeling and artificial intelligence to accelerate the discovery of new materials and catalysts. In particular, Kulik develops new strategies to improve the accuracy of density functional theory. [5] [6]
Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of molecules, groups of molecules, and solids. The importance of this subject stems from the fact that, with the exception of some relatively recent findings related to the hydrogen molecular ion, achieving an accurate quantum mechanical depiction of chemical systems analytically, or in a closed form, is not feasible. The complexity inherent in the many-body problem exacerbates the challenge of providing detailed descriptions of quantum mechanical systems. While computational results normally complement information obtained by chemical experiments, it can occasionally predict unobserved chemical phenomena.
Markus J. Buehler is an American materials scientist and engineer at the Massachusetts Institute of Technology (MIT), where he holds the endowed McAfee Professorship of Engineering chair. He is a member of the faculty at MIT's Department of Civil and Environmental Engineering, where he directs the Laboratory for Atomistic and Molecular Mechanics (LAMM), and also a member of MIT's Center for Computational Science and Engineering (CCSE) in the Schwarzman College of Computing. His scholarship spans science to art, and he is also a composer of experimental, classical and electronic music, with an interest in sonification. He has given several TED talks about his work.
Tobin Jay Marks is an inorganic chemistry Professor, the Vladimir N. Ipatieff Professor of Catalytic Chemistry, Professor of Material Science and Engineering, Professor of Chemical and Biological Engineering, and Professor of Applied Physics at Northwestern University in Evanston, Illinois. Among the themes of his research are synthetic organo-f-element and early-transition metal organometallic chemistry, polymer chemistry, materials chemistry, homogeneous and heterogeneous catalysis, molecule-based photonic materials, superconductivity, metal-organic chemical vapor deposition, and biological aspects of transition metal chemistry.
The Irving Langmuir Prize in Chemical Physics is awarded annually, in even years by the American Chemical Society and in odd years by the American Physical Society. The award is meant to recognize and encourage outstanding interdisciplinary research in chemistry and physics, in the spirit of Irving Langmuir. A nominee must have made an outstanding contribution to chemical physics or physical chemistry within the 10 years preceding the year in which the award is made. The award will be granted without restriction, except that the recipient must be a resident of the United States.
Angela K. Wilson is an American scientist and former (2022) President of the American Chemical Society. She currently serves as the John A. Hannah Distinguished Professor of Chemistry, associate dean for strategic initiatives in the College of Natural Sciences, and director of the MSU Center for Quantum Computing, Science, and Engineering (MSU-Q) at Michigan State University.
Minnesota Functionals (Myz) are a group of highly parameterized approximate exchange-correlation energy functionals in density functional theory (DFT). They are developed by the group of Donald Truhlar at the University of Minnesota. The Minnesota functionals are available in a large number of popular quantum chemistry computer programs, and can be used for traditional quantum chemistry and solid-state physics calculations.
Donald Gene Truhlar is an American scientist working in theoretical and computational chemistry and chemical physics with special emphases on quantum mechanics and chemical dynamics.
Zhenan Bao is a Chinese-born American chemical engineer. She serves as K. K. Lee Professor of Chemical Engineering at Stanford University, with courtesy appointments in Chemistry and Material Science and Engineering. She served as the Department Chair of Chemical Engineering from 2018 to 2022. Bao is known for her work on organic field-effect transistors and organic semiconductors, for applications including flexible electronics and electronic skin.
Emily A. Carter is the Gerhard R. Andlinger Professor in Energy and the Environment and a professor of Mechanical and Aerospace Engineering (MAE), the Andlinger Center for Energy and the Environment (ACEE), and Applied and Computational Mathematics at Princeton University. She is also a member of the executive management team at the Princeton Plasma Physics Laboratory (PPPL), serving as Senior Strategic Advisor and Associate Laboratory Director for Applied Materials and Sustainability Sciences.
Timothy M. Swager is an American Scientist and the John D. MacArthur Professor of Chemistry at the Massachusetts Institute of Technology. His research is at the interface of chemistry and materials science, with specific interests in carbon nanomaterials, polymers, and liquid crystals. He is an elected member of the National Academy of Sciences, American Academy of Arts and Sciences, and the National Academy of Inventors.
Yang Shao-Horn is a Chinese American scholar, Professor of Mechanical Engineering and Materials Science and Engineering and a member of Research Laboratory of Electronics at the Massachusetts Institute of Technology. She is known for research on understanding and controlling of processes for storing electrons in chemical bonds towards zero-carbon energy and chemicals.
Klavs Flemming Jensen is a chemical engineer who is currently the Warren K. Lewis Professor at the Massachusetts Institute of Technology (MIT).
Stephanie Lee Brock is an American chemist who is professor of inorganic chemistry at Wayne State University. Her research considers transition metal pnictides and chalcogenide nanomaterials. She is a Fellow of the American Association for the Advancement of Science and the American Chemical Society.
Cristina Nevado is a Spanish chemist who is a Professor of Organic Chemistry at the University of Zurich. Her research considers chemical synthesis and organometallic reactions. She received the 2021 Margaret Faul Women in Chemistry Award.
Clémence Corminboeuf is a Swiss chemist who is Professor of Computational chemistry at the École Polytechnique Fédérale de Lausanne. She was awarded the Swiss Chemical Society 2021 Heilbronner-Hückel Award.
Anastassia N. Alexandrova is an American chemist who is a professor at the University of California, Los Angeles. Her research considers the computational design of functional materials.
Christine Luscombe is a Japanese-British chemist who is a professor at the Okinawa Institute of Science and Technology. Her research investigates polymer chemistry, organic electronics, organic photovoltaics and the synthesis of novel materials for processable electronics. She serves on the editorial boards of Macromolecules, Advanced Functional Materials, the Annual Review of Materials Research and ACS Applied Materials & Interfaces.
Rebekka Klausen is an American chemist who is the Second Decade Society Associate Professor at Johns Hopkins University. Her research considers carbon and silicon-based nanomaterials for optoelectronic devices. She was a finalist for the 2021 Blavatnik Awards for Young Scientists.
Samira Siahrostami is an Iranian computational chemist who is an associate professor at the University of Calgary. She designs new materials for catalysis, and develops computer simulations to understand electrochemical reactions. She was awarded the 2023 Canadian Society for Chemistry Tom Zeigler Award.
Ram Seshadri is an American materials scientist, chemist and academic. He is the associate dean for research in the College of Engineering as well as distinguished professor in the Materials Department and the Department of Chemistry and Biochemistry, and the Fred and Linda R. Wudl Professor of Materials Science at University of California, Santa Barbara.