Heidelberg Institute for Theoretical Studies

Last updated

The Heidelberg Institute for Theoretical Studies (HITS gGmbH) is a non-profit research institution founded in 2010 by Klaus Tschira, co-founder of SAP, through the Klaus Tschira Stiftung foundation. Situated at the intersection of the natural sciences, mathematics, and computer science, it is dedicated to the exploration of fundamental research, with its core focus being in the realm of processing, structuring, and analysis of datasets, encompassing a diverse array of research fields, from molecular biology to astrophysics.

Contents

HITS actively collaborates with universities, research institutions, and industry partners. The institute has a multifaceted ownership structure, with key stakeholders including the "HITS-Stiftung", Heidelberg University and the Karlsruhe Institute of Technology (KIT). External funding sources from the Federal Ministry of Education and Research, the German Research Foundation and the European Union, play a pivotal role in supporting its research endeavors.

Research groups

As at 2017, HITS comprised the following research groups: [1]

Astroinformatics (AIN)

The Astroinformatics group develops new approaches to analyze and process the increasing amount of data in astronomy. The approaches of this group are based on machine/statistical learning and assist the researchers in performing the required analyses. [2]

Computational Molecular Evolution (CME)

The Computational Molecular Evolution group develops methods, new software, and new computer architectures for computing phylogenies (evolutionary trees). Furthermore, it provides expertise in parallel computing and computer architecture to other research groups. It also maintains and operates the scientific computing cluster and the IT infrastructure at HITS. [3]

Computational Statistics (CST)

The Computational Statistics group works on mathematical foundations and statistical methodology for forecasting. The aim is to develop methods for probabilistic forecasts, to generate predictive probability distributions for future events and quantities. The group's second research focus is on spatial statistics, which is concerned with the analysis and interpretation of spatially distributed data. [4]

Data Mining and Uncertainty Quantification (DMQ)

The Data Mining and Uncertainty Quantification group makes use of technology from the fields of High Performance Computing and Uncertainty Quantification in order to quantify uncertainties in large data sets towards reliable insights in Data Mining. [5]

Groups and Geometry (GRG)

The Groups and Geometry group investigates various mathematical problems in the fields of geometry and topology, which involve the interplay between geometric spaces, such as Riemannian manifolds or metric spaces, and groups, arising for example from symmetries, acting on them. [6]

Machine Learning and Artificial Intelligence (MLI)

The MLI group works on novel algorithms and models for data-efficient learning, geometric deep learning, and interpretability. [7]

Molecular Biomechanics (MBM)

The Molecular Biomechanics group develops simulation techniques and continuum mechanics models for identifying the force-bearing structural elements in complex biological materials and for modifying them so that they have certain desired properties. The overall goal is to investigate how proteins respond to mechanical forces and why. [8]

Molecular and Cellular Modeling (MCM)

The Molecular and Cellular Modeling group detects and simulates the behavior of molecules with computer-aided methods and software tools. Furthermore, they develop interactive web-based visualization tools and applications for complex molecular simulations. [9]

Natural Language Processing (NLP)

The Natural Language Processing group focuses on the semantics and pragmatics of discourse. The group develops software facilitating the multimodal dialogue between users and machines. The aim is to use the computer for understanding and generating language and texts and to make use of computers more naturally in the long term. [10]

Physics of Stellar Objects (PSO)

The Physics of Stellar Objects group is conducting research on stars and stellar explosions. One of the main goals of the group is to simulate thermonuclear explosions of white dwarfs, which lead to Type Ia supernovae. [11]

Scientific Databases and Visualization (SDBV)

The Scientific Databases and Visualization group focuses on scientific databases and on the visualization of scientific data. The objective is to consolidate knowledge scattered all over the world and to make it easily accessible to scientists. [12]

Stellar Evolution Theory (SET)

The Stellar Evolution Theory group investigates the turbulent and explosive lives of massive stars. The group focuses on massive binary stars and the intricate merging process. Mergers produce strong magnetic fields, and the merger products may forge highly-magnetised neutron stars in their terminal supernova explosions. These magnetic neutron stars are known as magnetars. [13]

Theory and Observations of Stars (TOS)

The Theory and Observations of Stars group investigates the physical processes that take place in stars and how these change as a function of stellar evolution. The group focuses on low-mass main-sequence stars, subgiants, and red giants and uses a method known as asteroseismology for their research. [14]

Former research groups

Following research groups have been conducting research at HITS:

Computational Biology (CBI)

The CBI research group started in 2013 at HITS under the junior group leader Siegfried Schloissnig. The group investigated the genome of salamanders and flatworms. After almost five years of intensive research, Schloissnig and his team – together with colleagues from Dresden and Vienna – managed to decipher the genome of the Mexican salamander Axolotl and the flatworm Schmidtea mediterranea. Both animals are important organisms in regeneration research. The research results have been published in the scientific journal Nature. Since 2018 Siegfried Schloissnig has continued his research at the Research Institute of Molecular Pathology (IMP) in Vienna. [15]

Computational Carbon Chemistry (CCC)

The Computational Carbon Chemistry group was established in 2019 and used computational chemistry to explore and exploit organic materials, focusing on graphene-based materials. The group developed computer-based tools and concepts for designing and screening new graphene-based materials and devices with target applications in metal-free catalysis and molecular electronics. In 2024, after five years of intensive research, junior group leader Dr Ganna (Anya) Gryn’ova took up a position as Birmingham Fellow and Associate Professor of Computational Chemistry at the University of Birmingham. [16]

High-Energy Astrophysics and Cosmology (HAC)

The HAC research group started 2016 at HITS. The group leader Christoph Pfrommer worked at HITS since 2010, did his habilitation there and earned an ERC Consolidator Grant that enabled him to build up his own junior research group at HITS. As of April 1, 2017, Pfrommer is leading the research group Cosmology and Large-scale Structure at the Leibniz Institute for Astrophysics Potsdam (AIP) and professor for astrophysics at the University of Potsdam. His group stayed at HITS until summer 2017 and then also moved to Potsdam. [17]

Theoretical Astrophysics (TAP)

The TAP group started in March 2013 at HITS under the group leader Volker Springel. Springel designed and implemented the largest and most comprehensive computer simulations of the Universe thus far: the Millennium Simulation 2005, the "Illustris" Simulation 2014, and the "Illustris TNG" Simulation 2018. He served as leader of the research group "Theoretical Astrophysics" at HITS from March 2010 while simultaneously working as Professor of Theoretical Astrophysics at Heidelberg University. At HITS, among many other things, Springel refined the "Arepo" code that he had developed, thereby making it possible to simulate the diverse shapes and sizes of galaxies with supercomputers. To date, the code has been used or cited in more than 750 publications. Springel received an ERC Starting Grant in 2012 and has been a "Highly Cited Researcher" since 2014. He became a member of the German National Academy of Sciences Leopoldina in 2017. As of 1 August 2018, he assumes his new position as Director of the Max Planck Institute for Astrophysics in Garching. Springel had already been appointed Max Planck Director last year but continued to work at HITS and Heidelberg University until the end of July 2018. [18]

Related Research Articles

<span class="mw-page-title-main">Galaxy formation and evolution</span> Subfield of cosmology

In cosmology, the study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, clustering and merging allows galaxies to accumulate mass, determining both their shape and structure. Hydrodynamics simulation, which simulates both baryons and dark matter, is widely used to study galaxy formation and evolution.

<span class="mw-page-title-main">Outline of academic disciplines</span> Academic fields of study or professions

An academic discipline or field of study is a branch of knowledge, taught and researched as part of higher education. A scholar's discipline is commonly defined by the university faculties and learned societies to which they belong and the academic journals in which they publish research.

<span class="mw-page-title-main">Computer simulation</span> Process of mathematical modelling, performed on a computer

Computer simulation is the running of a mathematical model on a computer, the model being designed to represent the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics, astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.

<span class="mw-page-title-main">Scientific visualization</span> Interdisciplinary branch of science concerned with presenting scientific data visually

Scientific visualization is an interdisciplinary branch of science concerned with the visualization of scientific phenomena. It is also considered a subset of computer graphics, a branch of computer science. The purpose of scientific visualization is to graphically illustrate scientific data to enable scientists to understand, illustrate, and glean insight from their data. Research into how people read and misread various types of visualizations is helping to determine what types and features of visualizations are most understandable and effective in conveying information.

<span class="mw-page-title-main">Visual Molecular Dynamics</span> Visualization and modelling software

Visual Molecular Dynamics (VMD) is a molecular modelling and visualization computer program. VMD is developed mainly as a tool to view and analyze the results of molecular dynamics simulations. It also includes tools for working with volumetric data, sequence data, and arbitrary graphics objects. Molecular scenes can be exported to external rendering tools such as POV-Ray, RenderMan, Tachyon, Virtual Reality Modeling Language (VRML), and many others. Users can run their own Tcl and Python scripts within VMD as it includes embedded Tcl and Python interpreters. VMD runs on Unix, Apple Mac macOS, and Microsoft Windows. VMD is available to non-commercial users under a distribution-specific license which permits both use of the program and modification of its source code, at no charge.

Computational science, also known as scientific computing, technical computing or scientific computation (SC), is a division of science, and more specifically the Computer Sciences, which uses advanced computing capabilities to understand and solve complex physical problems. While this discussion typically extenuates into Visual Computation, this research field of study will typically include the following research categorizations.

<span class="mw-page-title-main">Max Planck Institute for Gravitational Physics</span> Physics Institute in Potsdam and Hanover

The Max Planck Institute for Gravitational Physics is a Max Planck Institute whose research is aimed at investigating Einstein's theory of relativity and beyond: Mathematics, quantum gravity, astrophysical relativity, and gravitational-wave astronomy. The institute was founded in 1995 and is located in the Potsdam Science Park in Golm, Potsdam and in Hannover where it closely collaborates with the Leibniz University Hannover. Both the Potsdam and the Hannover parts of the institute are organized in three research departments and host a number of independent research groups.

<span class="mw-page-title-main">Scientific modelling</span> Scientific activity that produces models

Scientific modelling is an activity that produces models representing empirical objects, phenomena, and physical processes, to make a particular part or feature of the world easier to understand, define, quantify, visualize, or simulate. It requires selecting and identifying relevant aspects of a situation in the real world and then developing a model to replicate a system with those features. Different types of models may be used for different purposes, such as conceptual models to better understand, operational models to operationalize, mathematical models to quantify, computational models to simulate, and graphical models to visualize the subject.

Materials Studio is software for simulating and modeling materials. It is developed and distributed by BIOVIA, a firm specializing in research software for computational chemistry, bioinformatics, cheminformatics, molecular dynamics simulation, and quantum mechanics.

<span class="mw-page-title-main">Lawrence J. Rosenblum</span> American mathematician

Lawrence Jay Rosenblum is an American mathematician, and Program Director for Graphics and Visualization at the National Science Foundation.

The Center for Simulation of Advanced Rockets (CSAR) is an interdisciplinary research group at the University of Illinois at Urbana-Champaign, and is part of the United States Department of Energy's Advanced Simulation and Computing Program. CSAR's goal is to accurately predict the performance, reliability, and safety of solid propellant rockets.

The Sidney Fernbach Award established in 1992 by the IEEE Computer Society, in memory of Sidney Fernbach, one of the pioneers in the development and application of high performance computers for the solution of large computational problems as the Division Chief for the Computation Division at Lawrence Livermore Laboratory from the late 1950s through the 1970s. A certificate and $2,000 are awarded for outstanding contributions in the application of high performance computers using innovative approaches. The nomination deadline is 1 July each year.

<span class="mw-page-title-main">Astroinformatics</span> Interdisciplinary field of study

Astroinformatics is an interdisciplinary field of study involving the combination of astronomy, data science, machine learning, informatics, and information/communications technologies. The field is closely related to astrostatistics.

<span class="mw-page-title-main">Christopher R. Johnson</span> American computer scientist

Christopher Ray Johnson is an American computer scientist. He is a distinguished professor of computer science at the University of Utah, and founding director of the Scientific Computing and Imaging Institute (SCI). His research interests are in the areas of scientific computing and scientific visualization.

<span class="mw-page-title-main">Computational astrophysics</span> Methods and computing tools developed and used in astrophysics research

Computational astrophysics refers to the methods and computing tools developed and used in astrophysics research. Like computational chemistry or computational physics, it is both a specific branch of theoretical astrophysics and an interdisciplinary field relying on computer science, mathematics, and wider physics. Computational astrophysics is most often studied through an applied mathematics or astrophysics programme at PhD level.

The Bolshoi simulation, a computer model of the universe run in 2010 on the Pleiades supercomputer at the NASA Ames Research Center, was the most accurate cosmological simulation to that date of the evolution of the large-scale structure of the universe. The Bolshoi simulation used the now-standard ΛCDM (Lambda-CDM) model of the universe and the WMAP five-year and seven-year cosmological parameters from NASA's Wilkinson Microwave Anisotropy Probe team. "The principal purpose of the Bolshoi simulation is to compute and model the evolution of dark matter halos, thereby rendering the invisible visible for astronomers to study, and to predict visible structure that astronomers can seek to observe." “Bolshoi” is a Russian word meaning “big.”

<span class="mw-page-title-main">Illustris project</span> Computer-simulated universes

The Illustris project is an ongoing series of astrophysical simulations run by an international collaboration of scientists. The aim is to study the processes of galaxy formation and evolution in the universe with a comprehensive physical model. Early results were described in a number of publications following widespread press coverage. The project publicly released all data produced by the simulations in April, 2015. Key developers of the Illustris simulation have been Volker Springel and Mark Vogelsberger. The Illustris simulation framework and galaxy formation model has been used for a wide range of spin-off projects, starting with Auriga and IllustrisTNG followed by Thesan (2021), MillenniumTNG (2022) and TNG-Cluster (2023).

<span class="mw-page-title-main">SAMSON</span>

SAMSON is a computer software platform for molecular design being developed by OneAngstrom and previously by the NANO-D group at the French Institute for Research in Computer Science and Automation (INRIA).

References

  1. "Research" . Retrieved 22 January 2017.
  2. "Astroinformatics" . Retrieved 22 January 2017.
  3. "Scientific Computing" . Retrieved 22 January 2017.
  4. "Computational Statistics" . Retrieved 22 January 2017.
  5. "Data Mining and Uncertainty Quantification" . Retrieved 22 January 2017.
  6. "Groups and Geometry" . Retrieved 22 January 2017.
  7. "Machine Learning and Artificial Intelligence" . Retrieved 2 August 2023.
  8. "Molecular Biomechanics" . Retrieved 22 January 2017.
  9. "Molecular and Cellular Modeling" . Retrieved 22 January 2017.
  10. "Natural Language Processing" . Retrieved 22 January 2017.
  11. "H-ITS | Physics of Stellar Objects". Archived from the original on 2015-02-15. Retrieved 2015-04-01.
  12. "Scientific Databases and Visualization" . Retrieved 22 January 2017.
  13. "Stellar Evolution Theory". 18 January 2021. Retrieved 18 January 2021.
  14. "Theory and Observations of Stars" . Retrieved 18 January 2021.
  15. "CBI Junior Group: Mission Accomplished". 2018-02-12.
  16. "Computational Carbon Chemistry". 2023-10-08. Retrieved 10 August 2023.
  17. "HITS researcher Christoph Pfrommer is new professor at the AIP Potsdam". 2017-04-03. Retrieved 1 August 2017.
  18. "An Honor and a Farewell". August 2018.