In mathematics, the Herbrand quotient is a quotient of orders of cohomology groups of a cyclic group. It was invented by Jacques Herbrand. It has an important application in class field theory.
If G is a finite cyclic group acting on a G-module A, then the cohomology groups Hn(G,A) have period 2 for n≥1; in other words
an isomorphism induced by cup product with a generator of H2(G,Z). (If instead we use the Tate cohomology groups then the periodicity extends down to n=0.)
A Herbrand module is an A for which the cohomology groups are finite. In this case, the Herbrand quotienth(G,A) is defined to be the quotient
of the order of the even and odd cohomology groups.
The quotient may be defined for a pair of endomorphisms of an Abelian group, f and g, which satisfy the condition fg = gf = 0. Their Herbrand quotient q(f,g) is defined as
if the two indices are finite. If G is a cyclic group with generator γ acting on an Abelian group A, then we recover the previous definition by taking f = 1 - γ and g = 1 + γ + γ2 + ... .
is exact, and any two of the quotients are defined, then so is the third and [2]
These properties mean that the Herbrand quotient is usually relatively easy to calculate, and is often much easier to calculate than the orders of either of the individual cohomology groups.
In mathematics, a group is a set equipped with an operation that combines any two elements to form a third element while being associative as well as having an identity element and inverse elements. These three conditions, called group axioms, hold for number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The formulation of the axioms is, however, detached from the concrete nature of the group and its operation. This allows one to handle entities of very different mathematical origins in a flexible way, while retaining essential structural aspects of many objects in abstract algebra and beyond. The ubiquity of groups in numerous areas—both within and outside mathematics—makes them a central organizing principle of contemporary mathematics.
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.
In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension.
Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.
In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups. A Galois group G associated to a field extension L/K acts in a natural way on some abelian groups, for example those constructed directly from L, but also through other Galois representations that may be derived by more abstract means. Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor.
In arithmetic geometry, the Weil–Châtelet group or WC-group of an algebraic group such as an abelian variety A defined over a field K is the abelian group of principal homogeneous spaces for A, defined over K. John Tate (1958) named it for François Châtelet (1946) who introduced it for elliptic curves, and André Weil (1955), who introduced it for more general groups. It plays a basic role in the arithmetic of abelian varieties, in particular for elliptic curves, because of its connection with infinite descent.
The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.
This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.
In mathematics, a class formation is a topological group acting on a module satisfying certain conditions. Class formations were introduced by Emil Artin and John Tate to organize the various Galois groups and modules that appear in class field theory.
In mathematics, Tate cohomology groups are a slightly modified form of the usual cohomology groups of a finite group that combine homology and cohomology groups into one sequence. They were introduced by John Tate, and are used in class field theory.
In mathematics, an octonion algebra or Cayley algebra over a field F is an algebraic structure which is an 8-dimensional composition algebra over F. In other words, it is a unital non-associative algebra A over F with a non-degenerate quadratic form N such that
In mathematics, the main conjecture of Iwasawa theory is a deep relationship between p-adic L-functions and ideal class groups of cyclotomic fields, proved by Kenkichi Iwasawa for primes satisfying the Kummer–Vandiver conjecture and proved for all primes by Mazur and Wiles (1984). The Herbrand–Ribet theorem and the Gras conjecture are both easy consequences of the main conjecture. There are several generalizations of the main conjecture, to totally real fields, CM fields, elliptic curves, and so on.
In mathematics, the inflation-restriction exact sequence is an exact sequence occurring in group cohomology and is a special case of the five-term exact sequence arising from the study of spectral sequences.
In mathematics, the Iwasawa algebra Λ(G) of a profinite group G is a variation of the group ring of G with p-adic coefficients that take the topology of G into account. More precisely, Λ(G) is the inverse limit of the group rings Zp(G/H) as H runs through the open normal subgroups of G. Commutative Iwasawa algebras were introduced by Iwasawa (1959) in his study of Zp extensions in Iwasawa theory, and non-commutative Iwasawa algebras of compact p-adic analytic groups were introduced by Lazard (1965).
In mathematics, a cohomological invariant of an algebraic group G over a field is an invariant of forms of G taking values in a Galois cohomology group.