Heterogeneous water oxidation

Last updated

Water oxidation is one of the half reactions of water splitting:

Contents

2H2O → O2 + 4H+ + 4e  Oxidation (generation of dioxygen)

4H+ + 4e → 2H2  Reduction (generation of dihydrogen)

2H2O → 2H2 + O2 Total Reaction

Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [1] as well as in some electrowinning processes. [2] Since hydrogen can be used as an alternative clean burning fuel, there has been a need to split water efficiently. However, there are known materials that can mediate the reduction step efficiently therefore much of the current research is aimed at the oxidation half reaction also known as the Oxygen Evolution Reaction (OER). Current research focuses on understanding the mechanism of OER and development of new materials that catalyze the process. [3]

Thermodynamics

Both the oxidation and reduction steps are pH dependent. Figure 1 shows the standard potentials at pH 0 (strongly acidic) as referenced to the normal hydrogen electrode (NHE).

2 half reactions (at pH = 0)
Oxidation 2H2O → 4H+ + 4e + O2 E° = +1.23 V vs. NHE

Reduction 4H+ + 4e → 2H2 E° = 0.00 V vs. NHE

Overall 2H2O → 2H2 + O2 E°cell = +1.23 V; ΔG = 475 kJ/mol


Water splitting can be done at higher pH values as well however the standard potentials will vary according to the Nernst equation and therefore shift by -59 mV for each pH unit increase. However, the total cell potential (difference between oxidation and reduction half cell potentials) will remain 1.23 V. This potential can be related to Gibbs free energy (ΔG) by:

ΔG°cell = −nFE°cell

Where n is the number of electrons per mole products and F is the Faraday constant. Therefore, it takes 475 kJ of energy to make one mole of O2 as calculated by thermodynamics. However, in reality no process can be this efficient. Systems always suffer from an overpotential that arise from activation barriers, concentration effects and voltage drops due to resistance. The activation barriers or activation energy is associated with high energy transition states that are reached during the electrochemical process of OER. The lowering of these barriers would allow for OER to occur at lower overpotentials and faster rates.

Mechanism

Heterogeneous OER is sensitive to the surface which the reaction takes place and is also affected by the pH of the solution. The general mechanism for acidic and alkaline solutions is shown below. Under acidic conditions water binds to the surface with the irreversible removal of one electron and one proton to form a platinum hydroxide. [4] In an alkaline solution a reversible binding of hydroxide ion coupled to a one electron oxidation is thought to precede a turnover-limiting electrochemical step involving the removal of one proton and one electron to form a surface oxide species. [5] The shift in mechanism between the pH extremes has been attributed to the kinetic facility of oxidizing hydroxide ion relative to water. Using the Tafel equation, one can obtain kinetic information about the kinetics of the electrode material such as the exchange current density and the Tafel slope. [6] OER is presumed to not take place on clean metal surfaces such as platinum, but instead an oxide surface is formed prior to oxygen evolution. [7]

OER under acidic conditions. Acidic OER.png
OER under acidic conditions.
OER under alkaline conditions. Alkaline OER.png
OER under alkaline conditions.

Catalyst Materials

OER has been studied on a variety of materials including:

Preparation of the surface and electrolysis conditions have a large effect on reactivity (defects, steps, kinks, low coordinate sites) therefore it is difficult to predict an OER material's properties by its bulk structure. Surface effects have a large influence on the kinetics and thermodynamics of OER.

Platinum

Platinum has been a widely studied material for OER because it is the catalytically most active element for this reaction. [13] It exhibits exchange current density values on the order of 10−9 A/cm2. Much of the mechanistic knowledge of OER was gathered from studies on platinum and its oxides. [5] It was observed that there was a lag in the evolution of oxygen during electrolysis. Therefore, an oxide film must first form at the surface before OER begins. [5] The Tafel slope, which is related to the kinetics of the electrocatalytic reaction, was shown to be independent of the oxide layer thickness at low current densities but becomes dependent on oxide thickness at high current densities [14]

Iridium oxide

Iridium oxide (IrO2) is the industry standard OER catalyst used in polymer electrolyte membrane electrolysis due to its high stability. [15] It was first proposed in the 1970s as an OER catalyst, and has been widely researched and implemented since then. [16]

Ruthenium oxide

Ruthenium oxide (RuO2) shows some of the best performance as an OER material in acidic environments. It has been studied since the early 1970s as a water oxidation catalyst with one of the lowest reported overpotentials for OER at the time. [17] It has since been investigated for OER in Ru(110) single crystal oxide surfaces, [18] compact films, [19] Titanium supported films. [20] RuO2 films can be prepared by thermal decomposition of ruthenium chloride on inert substrates. [19]

Spinel materials

The spinel compounds are extremely useful in designing heterogeneous water oxidation catalysts. Generally these spinels are ofter coated over the carbon materials and reduced further to create oxygen vacancy in their lattice to enhance the water oxidation capabilities. [21] [22]

Related Research Articles

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

<span class="mw-page-title-main">Proton-exchange membrane fuel cell</span> Power generation technology

Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges and a special proton-conducting polymer electrolyte membrane. PEMFCs generate electricity and operate on the opposite principle to PEM electrolysis, which consumes electricity. They are a leading candidate to replace the aging alkaline fuel-cell technology, which was used in the Space Shuttle.

A "photoelectrochemical cell" is one of two distinct classes of device. The first produces electrical energy similarly to a dye-sensitized photovoltaic cell, which meets the standard definition of a photovoltaic cell. The second is a photoelectrolytic cell, that is, a device which uses light incident on a photosensitizer, semiconductor, or aqueous metal immersed in an electrolytic solution to directly cause a chemical reaction, for example to produce hydrogen via the electrolysis of water.

<span class="mw-page-title-main">Sabatier reaction</span> Methanation process of carbon dioxide with hydrogen

The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures and pressures in the presence of a nickel catalyst. It was discovered by the French chemists Paul Sabatier and Jean-Baptiste Senderens in 1897. Optionally, ruthenium on alumina makes a more efficient catalyst. It is described by the following exothermic reaction:

A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. This is their essential function when incorporated into a membrane electrode assembly (MEA) of a proton-exchange membrane fuel cell or of a proton-exchange membrane electrolyser: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane.

<span class="mw-page-title-main">Electrolysis of water</span> Electricity-induced chemical reaction

Electrolysis of water is using electricity to split water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach approximately 2,800°C.

Oxygen evolution is the chemical process of generating elemental diatomic oxygen (O2) by a chemical reaction, usually from water, the most abundant oxide compound in the universe. Oxygen evolution on Earth is effected by biotic oxygenic photosynthesis, photodissociation, hydroelectrolysis, and thermal decomposition of various oxides and oxyacids. When relatively pure oxygen is required industrially, it is isolated by distilling liquefied air.

Gas diffusion electrodes (GDE) are electrodes with a conjunction of a solid, liquid and gaseous interface, and an electrical conducting catalyst supporting an electrochemical reaction between the liquid and the gaseous phase.

<span class="mw-page-title-main">Electrocatalyst</span> Catalyst participating in electrochemical reactions

An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst can be heterogeneous such as a platinized electrode. Homogeneous electrocatalysts, which are soluble, assist in transferring electrons between the electrode and reactants, and/or facilitate an intermediate chemical transformation described by an overall half reaction. Major challenges in electrocatalysts focus on fuel cells.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Proton exchange membrane electrolysis</span> Technology for splitting water molecules

Proton exchange membrane(PEM) electrolysis is the electrolysis of water in a cell equipped with a solid polymer electrolyte (SPE) that is responsible for the conduction of protons, separation of product gases, and electrical insulation of the electrodes. The PEM electrolyzer was introduced to overcome the issues of partial load, low current density, and low pressure operation currently plaguing the alkaline electrolyzer. It involves a proton-exchange membrane.

Alkaline water electrolysis is a type of electrolysis that is characterized by having two electrodes operating in a liquid alkaline electrolyte. Commonly, a solution of potassium hydroxide (KOH) or sodium hydroxide (NaOH) at 25-40 wt% is used. These electrodes are separated by a diaphragm, separating the product gases and transporting the hydroxide ions (OH) from one electrode to the other. A recent comparison showed that state-of-the-art nickel based water electrolysers with alkaline electrolytes lead to competitive or even better efficiencies than acidic polymer electrolyte membrane water electrolysis with platinum group metal based electrocatalysts.

<span class="mw-page-title-main">Mixed conductor</span>

Mixed conductors, also known as mixed ion-electron conductors(MIEC), are a single-phase material that has significant conduction ionically and electronically. Due to the mixed conduction, a formally neutral species can transport in a solid and therefore mass storage and redistribution are enabled. Mixed conductors are well known in conjugation with high-temperature superconductivity and are able to capacitate rapid solid-state reactions.

Yang Shao-Horn is a Chinese American scholar, Professor of Mechanical Engineering and Materials Science and Engineering and a member of Research Laboratory of Electronics at the Massachusetts Institute of Technology. She is known for research on understanding and controlling of processes for storing electrons in chemical bonds towards zero-carbon energy and chemicals.

<span class="mw-page-title-main">Water oxidation catalysis</span>

Water oxidation catalysis (WOC) is the acceleration (catalysis) of the conversion of water into oxygen and protons:

The Virtual breakdown mechanism is a concept in the field of electrochemistry. In electrochemical reactions, when the cathode and the anode are close enough to each other, the double layer of the regions from the two electrodes is overlapped, forming a large electric field uniformly distributed inside the entire electrode gap. Such high electric fields can significantly enhance the ion migration inside bulk solutions and thus increase the entire reaction rate, akin to the "breakdown" of the reactant(s). However, it is fundamentally different from the traditional "breakdown".

Electro-oxidation(EO or EOx), also known as anodic oxidation or electrochemical oxidation (EC), is a technique used for wastewater treatment, mainly for industrial effluents, and is a type of advanced oxidation process (AOP). The most general layout comprises two electrodes, operating as anode and cathode, connected to a power source. When an energy input and sufficient supporting electrolyte are provided to the system, strong oxidizing species are formed, which interact with the contaminants and degrade them. The refractory compounds are thus converted into reaction intermediates and, ultimately, into water and CO2 by complete mineralization.

In chemistry, the oxygen reduction reaction refers to the reduction half reaction whereby O2 is reduced to water or hydrogen peroxide. In fuel cells, the reduction to water is preferred because the current is higher. The oxygen reduction reaction is well demonstrated and highly efficient in nature.

<span class="mw-page-title-main">Anion exchange membrane electrolysis</span> Splitting of water using a semipermeable membrane

Anion exchange membrane(AEM) electrolysis is the electrolysis of water that utilises a semipermeable membrane that conducts hydroxide ions (OH) called an anion exchange membrane. Like a proton-exchange membrane (PEM), the membrane separates the products, provides electrical insulation between electrodes, and conducts ions. Unlike PEM, AEM conducts hydroxide ions. The major advantage of AEM water electrolysis is that a high-cost noble metal catalyst is not required, low-cost transition metal catalyst can be used instead. AEM electrolysis is similar to alkaline water electrolysis, which uses a non-ion-selective separator instead of an anion-exchange membrane.

References

  1. Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; Moore, T.A.; Moser, C.C.; Nocera, D.G.; Nozik, A.J.; Ort, D.R.; Parson, W.W.; Prince, R.C.; Sayre, R.T. (2011). "Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement". Science. 332 (6031): 805–9. Bibcode:2011Sci...332..805B. doi:10.1126/science.1200165. PMID   21566184. S2CID   22798697.
  2. Kotyk, J.F.K.; Chen, C.; Sheehan, S.W. (2018). "Corrosion Potential Modulation on Lead Anodes Using Water Oxidation Catalyst Coatings". Coatings. 8 (7): 246. doi: 10.3390/coatings8070246 .
  3. "Anode - Lewis Research Group". Nsl.caltech.edu. Retrieved 2012-08-05.
  4. Conway, B.E.; Liu, T.C. (1990). "Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evaluation of behavior of surface intermediate states at the oxide film". Langmuir. 6 (1): 268. doi:10.1021/la00091a044.
  5. 1 2 3 4 Birss, V.I.; Damjanovic, A.; Hudson, P.G. (1986). "Oxygen Evolution at Platinum Electrodes in Alkaline Solutions: II . Mechanism of the Reaction". J. Electrochem. Soc. 133 (8): 1621. Bibcode:1986JElS..133.1621B. doi:10.1149/1.2108978. hdl: 1880/44753 .
  6. Zeng, K.; Zhang, D. (2010). "Recent progress in alkaline water electrolysis for hydrogen production and applications". Prog. Energy Combust. Sci. 36 (3): 307. doi:10.1016/j.pecs.2009.11.002.
  7. Damjanovic, A.; Yeh, L.S.R.; Wolf, J.F. (1980). "Temperature Study of Oxide Film Growth at Platinum Anodes in H2SO4 Solutions". J. Electrochem. Soc. 127 (4): 874. doi:10.1149/1.2129773.
  8. Matsumoto, Y.; Sato, E. (1986). "Electrocatalytic properties of transition metal oxides for oxygen evolution reaction". Mater. Chem. Phys. 14 (5): 397. doi:10.1016/0254-0584(86)90045-3.
  9. Parmon, V.M.; Elizarova, G.L.; Kim, T.V. (1982). "Spinels as heterogeneous catalysts for oxidation of water to dioxygen by tris-bipyridyl complexes of iron(III) and ruthenium(III)". Reaction Kinetics and Catalysis Letters. 21 (3): 195. doi:10.1007/BF02070609. S2CID   97265373.
  10. Bockris, John O'M.; Otagawa, Takaaki (1983-07-01). "Mechanism of oxygen evolution on perovskites". The Journal of Physical Chemistry. 87 (15). American Chemical Society (ACS): 2960–2971. doi:10.1021/j100238a048. ISSN   0022-3654.
  11. Nepal, Binod; Das, Siddhartha (2013-05-31). "Sustained Water Oxidation by a Catalyst Cage-Isolated in a Metal-Organic Framework". Angewandte Chemie International Edition. 52 (28). Wiley: 7224–7227. doi:10.1002/anie.201301327. ISSN   1433-7851. PMID   23729244.
  12. Hansen, Rebecca E.; Das, Siddhartha (2014). "Biomimetic di-manganese catalyst cage-isolated in a MOF: robust catalyst for water oxidation with Ce(iv), a non-O-donating oxidant". Energy Environ. Sci. 7 (1). Royal Society of Chemistry (RSC): 317–322. doi:10.1039/c3ee43040e. ISSN   1754-5692.
  13. Dau, Holger; Limberg, Christian; Reier, Tobias; Risch, Marcel; Roggan, Stefan; Strasser, Peter (2010-06-28). "The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis". ChemCatChem. 2 (7). Wiley: 724–761. doi:10.1002/cctc.201000126. ISSN   1867-3880. S2CID   35384870.
  14. Birss, V. I.; Damjanovic, A. (1987-01-01). "Oxygen Evolution at Platinum Electrodes in Alkaline Solutions: I . Dependence on Solution pH and Oxide Film Thickness". Journal of the Electrochemical Society. 134 (1). The Electrochemical Society: 113–117. Bibcode:1987JElS..134..113B. doi:10.1149/1.2100385. ISSN   0013-4651.
  15. Rakousky, C.; Keeley, G.P.; Wippermann, K.; Carmo, M.; Stolten, D. (2018). "The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers". Electrochim. Acta. 278: 324. doi:10.1016/j.electacta.2018.04.154. S2CID   103333449.
  16. Beni, G.; Schiavone, L.M.; Shay, J.L.; Dautremont-Smith, W.C.; Schneider, B.S. (1979). "Electrocatalytic oxygen evolution on reactively sputtered electrochromic iridium oxide films". Nature. 282 (5736): 281. Bibcode:1979Natur.282..281B. doi:10.1038/282281a0. S2CID   4264659.
  17. Trasatti, Sergio; Buzzanca, Giovanni (1971). "Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 29 (2). Elsevier BV: A1–A5. doi:10.1016/s0022-0728(71)80111-0. ISSN   0022-0728.
  18. Castelli, Piero; Trasatti, Sergio; Pollak, Fred H.; O'Grady, William E. (1986). "Single crystals as model electrocatalysts". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 210 (1). Elsevier BV: 189–194. doi:10.1016/0022-0728(86)90325-6. ISSN   0022-0728.
  19. 1 2 Lodi, G.; Sivieri, E.; De Battisti, A.; Trasatti, S. (1978). "Ruthenium dioxide-based film electrodes". Journal of Applied Electrochemistry. 8 (2). Springer Science and Business Media LLC: 135–143. doi:10.1007/bf00617671. ISSN   0021-891X. S2CID   92764049.
  20. Trasatti, S (2000). "Electrocatalysis: understanding the success of DSA®". Electrochimica Acta. 45 (15–16). Elsevier BV: 2377–2385. doi:10.1016/s0013-4686(00)00338-8. ISSN   0013-4686.
  21. Sahoo, Pathik; Tan, Jing-Bo; Zhang, Zhi-Ming; Singh, Shiva Kumar; Lu, Tong-Bu (2018-02-06). "Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as High-Performance Electrocatalysts for the Oxygen Evolution Reaction". ChemCatChem. 10 (5). Wiley: 1075–1083. doi:10.1002/cctc.201701790. ISSN   1867-3880. S2CID   104164617.
  22. Tan, Jing-Bo; Sahoo, Pathik; Wang, Jia-Wei; Hu, Yu-Wen; Zhang, Zhi-Ming; Lu, Tong-Bu (2018). "Highly efficient oxygen evolution electrocatalysts prepared by using reduction-engraved ferrites on graphene oxide". Inorganic Chemistry Frontiers. 5 (2). Royal Society of Chemistry (RSC): 310–318. doi:10.1039/c7qi00681k. ISSN   2052-1553.