Heterospory

Last updated
A female pinecone (Pinophyta) produces the megaspores of this heterosporic plant. Pine cones - Scots Pine.jpg
A female pinecone (Pinophyta) produces the megaspores of this heterosporic plant.
A male pinecone (Pinophyta) produces the microspores of this heterosporic plant. Loblolly male flowers.jpg
A male pinecone (Pinophyta) produces the microspores of this heterosporic plant.

Heterospory is the production of spores of two different sizes and sexes by the sporophytes of land plants. The smaller of these, the microspore, is male and the larger megaspore is female. Heterospory evolved during the Devonian period from isospory independently in several plant groups: the clubmosses, the ferns including the arborescent horsetails, [1] and progymnosperms. [1] [2] This occurred as part of the process of evolution of the timing of sex differentiation. [3] Four extant groups of plants are heterosporous; Selaginella, Isoetes, Salviniales and seed plants. [4] [5]

Contents

Origin of heterospory

Heterospory evolved due to natural selection that favoured an increase in propagule size compared with the smaller spores of homosporous plants. [2] Heterosporous plants, similar to anisosporic plants[ clarification needed ], produce two different sized spores in separate sporangia that develop into separate male and female gametophytes. [6] [7] [2] It is proposed that the emergence of heterosporous plants started with the separation of sporangia, [7] which allowed for the development of two different spore types; numerous small spores that are easily dispersed, and fewer, larger spores that contain adequate resources to support the developing seedling. [8] During the Devonian period there were many species that utilized vertical growth to capture more sunlight. [7] Heterospory and separate sporangia probably evolved in response to competition for light. [7] Disruptive selection within species resulted in there being two separate sexes of gamete or even the whole plant. This may first have led to an increase in spore size and ultimately resulted in the species producing larger megaspores as well as smaller microspores. [9] [10]

Heterospory is advantageous in that having two different types of spores increases the likeliness that plants would successfully produce offspring. [7] Heterosporous spores can respond independently to selection by ecological conditions in order to strengthen male and female reproductive function. [7] Heterospory evolved from homospory many times, but the species in which it first appeared are now extinct. [6] Heterospory is thought to have emerged in the Devonian era, mostly in wet/damp places based on fossil record evidence. [6] In addition to being an outcome of competition for light, it is thought that heterospory was more successful in wetter areas because the megaspore could move more easily around in an aquatic environment while microspores were more easily dispersed by wind. [10] [6] Differing sized spores have been observed in many fossilized plant species. [7] For example, the species Lepidophloios, also known as the scale tree, has been shown in fossils to have been heterosporous; [6] The scale tree had separate cones containing either male or female spores on the same plant. [6] Modern heterosporous plants such as many ferns exhibit endospory, in which a megagametophyte is fertilized by a microgametophyte all while still inside the spore wall, gaining nutrients from the inside of spore. [6] Both heterospory and endospory seem to be one of the many precursors to seed plants and the ovary. [9] [7] [2] Heterosporic plants that produce seeds are their most successful and widespread descendants. [9] Seed plants constitute the largest subsection of heterosporic plants. [8]

Microspores and megaspores

Microspores are haploid spores that in endosporic species contain the male gametophyte, which is carried to the megaspores by wind, water currents or animal vectors. Microspores are not flagellated, and are therefore not capable of active movement. [11] The morphology of the microspore consists of an outer double walled structures surrounding the dense cytoplasm and central nucleus. [12]

Megaspores contain the female gametophytes in heterosporic plant species. They develop archegonia that produce egg cells that are fertilized by sperm of the male gametophyte originating from the microspore. This results in the formation of a fertilized diploid zygote, that develops into the sporophyte embryo. While heterosporous plants produce fewer megaspores, they are significantly larger than their male counterparts. [12]

In exosporic species, the smaller spores germinate into free-living male gametophytes and the larger spores germinate into free-living female gametophytes. In endosporic species, the gametophytes of both sexes are very highly reduced and contained within the spore wall. The microspores of both exosporic and endosporic species are free-sporing, distributed by wind, water or animal vectors, but in endosporic species the megaspores and the megagametophyte contained within are retained and nurtured by the sporophyte phase. Endosporic species are thus usually dioecious, a condition that promotes outcrossing. Some exosporic species produce micro- and megaspores in the same sporangium, a condition known as homoangy, while in others the micro- and megaspores are produced in separate sporangia (heterangy). These may both be borne on the same monoecious sporophyte or on different sporophytes in dioicous species. [8]

Reproduction

Heterospory was a key event in the evolution of both fossil and surviving plants. The retention of megaspores and the dispersal of microspores allow for both dispersal and establishment reproductive strategies. This adaptive ability of heterospory increases reproductive success as any type of environment favors having these two strategies. Heterospory stops self-fertilization from occurring in a gametophyte, but does not stop two gametophytes that originated from the same sporophyte from mating. [8] This specific type of self-fertilization is termed as sporophytic selfing, and in extant plants it occurs most commonly among angiosperms. While heterospory stops extreme inbreeding from occurring, it does not prevent inbreeding altogether as sporophytic selfing can still occur. [8]

A complete model for the origin of heterospory, known as the Haig-Westoby model, [13] establishes a connection between minimum spore size and successful reproduction of bisexual gametophytes. For the female function, as minimum spore size increases so does the chance for successful reproduction.

Related Research Articles

<span class="mw-page-title-main">Gametophyte</span> Haploid stage in the life cycle of plants and algae

A gametophyte is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

<span class="mw-page-title-main">Spore</span> Unit of reproduction adapted for dispersal and survival in unfavorable conditions

In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, fungi and protozoa. They were thought to have appeared as early as the mid-late Ordovician period as an adaptation of early land plants.

<span class="mw-page-title-main">Sporangium</span> Enclosure in which spores are formed

A sporangium ; pl.: sporangia) is an enclosure in which spores are formed. It can be composed of a single cell or can be multicellular. Virtually all plants, fungi, and many other groups form sporangia at some point in their life cycle. Sporangia can produce spores by mitosis, but in land plants and many fungi, sporangia produce genetically distinct haploid spores by meiosis.

<span class="mw-page-title-main">Alternation of generations</span> Reproductive cycle of plants and algae

Alternation of generations is the predominant type of life cycle in plants and algae. In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte.

<i>Isoetes</i> Genus of vascular plants in the family Isoetaceae

Isoetes, commonly known as the quillworts, is a genus of lycopod. It is the only living genus in the family Isoetaceae and order Isoetales. There are currently [when?] 192 recognized species, with a cosmopolitan distribution mostly in aquatic habitats but with the individual species often scarce to rare. Species virtually identical to modern quillworts have existed since the Jurassic epoch, though the timing of the origin of modern Isoetes is subject to considerable uncertainty.

<span class="mw-page-title-main">Apomixis</span> Replacement of the normal sexual reproduction by asexual reproduction, without fertilization

In botany, apomixis is asexual development of seed or embryo without fertilization. However, other definitions include replacement of the seed by a plantlet or replacement of the flower by bulbils.

<span class="mw-page-title-main">Sporophyte</span> Diploid multicellular stage in the life cycle of a plant or alga

A sporophyte is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores. This stage alternates with a multicellular haploid gametophyte phase.

<span class="mw-page-title-main">Salviniales</span> Order of plants

The order Salviniales is an order of ferns in the class Polypodiopsida.

<span class="mw-page-title-main">Ovule</span> Female plant reproductive structure

In seed plants, the ovule is the structure that gives rise to and contains the female reproductive cells. It consists of three parts: the integument, forming its outer layer, the nucellus, and the female gametophyte in its center. The female gametophyte — specifically termed a megagametophyte — is also called the embryo sac in angiosperms. The megagametophyte produces an egg cell for the purpose of fertilization. The ovule is a small structure present in the ovary. It is attached to the placenta by a stalk called a funicle. The funicle provides nourishment to the ovule. On the basis of the relative position of micropyle, body of the ovule, chalaza and funicle, there are six types of ovules.

<span class="mw-page-title-main">Plant reproductive morphology</span> Parts of plant enabling sexual reproduction

Plant reproductive morphology is the study of the physical form and structure of those parts of plants directly or indirectly concerned with sexual reproduction.

Dioecy is a characteristic of certain species that have distinct unisexual individuals, each producing either male or female gametes, either directly or indirectly. Dioecious reproduction is biparental reproduction. Dioecy has costs, since only the female part of the population directly produces offspring. It is one method for excluding self-fertilization and promoting allogamy (outcrossing), and thus tends to reduce the expression of recessive deleterious mutations present in a population. Plants have several other methods of preventing self-fertilization including, for example, dichogamy, herkogamy, and self-incompatibility.

<span class="mw-page-title-main">Microsporangium</span> Sporangia that produce spores that give rise to male gametophytes

A microsporangium (pl. microsporangia) is a sporangium that produces microspores that give rise to male gametophytes when they germinate. Microsporangia occur in all vascular plants that have heterosporic life cycles, such as seed plants, spike mosses and the aquatic fern genus Azolla. In gymnosperms and angiosperm anthers, the microsporangia produce microsporocytes, the microspore mother cells, which then produce four microspores through the process of meiosis. Microsporocytes are produced in the microsporangia of gymnosperm cones and the anthers of angiosperms. They are diploid microspore mother-cells, which then produce four haploid microspores by meiosis. These become pollen grains, within which the microspores divide twice by mitosis to produce a very simple gametophyte.

<span class="mw-page-title-main">Double fertilization</span> Complex fertilization mechanism of flowering plants

Double fertilization or double fertilisation is a complex fertilization mechanism of angiosperms. This process involves the fusion of a female gametophyte or megagametophyte, also called the embryonic sac, with two male gametes (sperm). It begins when a pollen grain adheres to the stigmatic surface of the carpel, the female reproductive structure of angiosperm flowers. The pollen grain begins to germinate, forming a pollen tube that penetrates and extends down through the style toward the ovary as it follows chemical signals released by the egg. The tip of the pollen tube then enters the ovary by penetrating through the micropyle opening in the ovule, and releases two sperm into the embryonic sac (megagametophyte).

<span class="mw-page-title-main">Microspore</span> Small land plant spores that develop into male gametophytes

Microspores are land plant spores that develop into male gametophytes, whereas megaspores develop into female gametophytes. The male gametophyte gives rise to sperm cells, which are used for fertilization of an egg cell to form a zygote. Megaspores are structures that are part of the alternation of generations in many seedless vascular cryptogams, all gymnosperms and all angiosperms. Plants with heterosporous life cycles using microspores and megaspores arose independently in several plant groups during the Devonian period. Microspores are haploid, and are produced from diploid microsporocytes by meiosis.

<span class="mw-page-title-main">Megaspore</span> Large spore in heterosporous plants that germinates into a female gametophyte

Megaspores, also called macrospores, are a type of spore that is present in heterosporous plants. These plants have two spore types, megaspores and microspores. Generally speaking, the megaspore, or large spore, germinates into a female gametophyte, which produces egg cells. These are fertilized by sperm produced by the male gametophyte developing from the microspore. Heterosporous plants include seed plants, water ferns (Salviniales), spikemosses (Selaginellaceae) and quillworts (Isoetaceae).

Plant reproduction is the production of new offspring in plants, which can be accomplished by sexual or asexual reproduction. Sexual reproduction produces offspring by the fusion of gametes, resulting in offspring genetically different from either parent. Asexual reproduction produces new individuals without the fusion of gametes, resulting in clonal plants that are genetically identical to the parent plant and each other, unless mutations occur.

Sporogenesis is the production of spores in biology. The term is also used to refer to the process of reproduction via spores. Reproductive spores were found to be formed in eukaryotic organisms, such as plants, algae and fungi, during their normal reproductive life cycle. Dormant spores are formed, for example by certain fungi and algae, primarily in response to unfavorable growing conditions. Most eukaryotic spores are haploid and form through cell division, though some types are diploid sor dikaryons and form through cell fusion.we can also say this type of reproduction as single pollination

This page provides a glossary of plant morphology. Botanists and other biologists who study plant morphology use a number of different terms to classify and identify plant organs and parts that can be observed using no more than a handheld magnifying lens. This page provides help in understanding the numerous other pages describing plants by their various taxa. The accompanying page—Plant morphology—provides an overview of the science of the external form of plants. There is also an alphabetical list: Glossary of botanical terms. In contrast, this page deals with botanical terms in a systematic manner, with some illustrations, and organized by plant anatomy and function in plant physiology.

<span class="mw-page-title-main">Embryonic sac</span>

A megaspore mother cell, or megasporocyte, is a diploid cell in plants in which meiosis will occur, resulting in the production of four haploid megaspores. At least one of the spores develop into haploid female gametophytes, the megagametophytes. The megaspore mother cell arises within the megasporangium tissue.

Endospory in plants is the retention and development of gametophytes, partially or entirely, within the walls of the generative spore. This is a trait present in many heterosporous plant species.

References

  1. 1 2 Stewart, W.N.; Rothwell, G.W. (1993). Paleobotany and the evolution of plants (2nd ed.). Cambridge: Cambridge University Press. ISBN   978-0-521-38294-6.
  2. 1 2 3 4 Bateman, R.M.; Dimichele, W.A. (1994). "Heterospory - the most iterative key innovation in the evolutionary history of the plant kingdom" (PDF). Biological Reviews of the Cambridge Philosophical Society. 69 (3): 345–417. doi:10.1111/j.1469-185x.1994.tb01276.x. S2CID   29709953. Archived from the original (PDF) on 2012-04-15. Retrieved 2010-12-30.
  3. Sussex, I.M. (1966) The origin and development of heterospory in vascular plants. Chapter 9 in Trends in Plant morphogenesis, ed. by E.G. Cutter, Longmans.
  4. Fern Ecology
  5. Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation
  6. 1 2 3 4 5 6 7 Ingrouille, Martin; Eddie, Bill (2006). Plants : evolution and diversity. Cambridge, UK: Cambridge University Press. ISBN   978-0-511-64852-6. OCLC   667094262.
  7. 1 2 3 4 5 6 7 8 Cruzan, Mitchell B. (2018). Evolutionary biology : a plant perspective. New York, NY. ISBN   978-0-19-088268-6. OCLC   1050360688.{{cite book}}: CS1 maint: location missing publisher (link)
  8. 1 2 3 4 5 Petersen, Kurt B.; Burd, Martin (2016-10-01). "Why did heterospory evolve?". Biological Reviews. 92 (3): 1739–1754. doi:10.1111/brv.12304. ISSN   1469-185X. PMID   27730728.
  9. 1 2 3 Haig, David; Westoby, Mark (1989-11-01). "Selective forces in the emergence of the seed habit". Biological Journal of the Linnean Society. 38 (3): 215–238. doi:10.1111/j.1095-8312.1989.tb01576.x. ISSN   1095-8312.
  10. 1 2 DiMichele, William A.; Davis, Jerrold I.; Olmstead, Richard G. (1989). "Origins of Heterospory and the Seed Habit: The Role of Heterochrony". Taxon. 38 (1): 1–11. doi:10.2307/1220881. hdl: 2027.42/149713 . ISSN   1996-8175. JSTOR   1220881.
  11. Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. Biology of Plants. W. H. Freeman.
  12. 1 2 Ray, Ankita. "Structure of Microspores and the Development of Male Gametophyte (= germination of Microspores)". Archived from the original on 8 December 2018. Retrieved 13 April 2017.
  13. Haig, David; Westoby, Mark (1988). "A model for the origin of heterospory". Journal of Theoretical Biology. 134 (2): 257–272. Bibcode:1988JThBi.134..257H. doi:10.1016/s0022-5193(88)80203-0.