High Resolution Wide Swath SAR imaging

Last updated

High Resolution Wide Swath (HRWS) imaging is an important branch in synthetic aperture radar (SAR) imaging, a remote sensing technique capable of providing high resolution images independent of weather conditions and sunlight illumination. This makes SAR very attractive for the systematic observation of dynamic processes on the Earth's surface, which is useful for environmental monitoring, earth resource mapping and military systems.

Contents

35cm image of West Angelas Iron Ore Mine, Australia taken by Umbra 35cm image of West Angelas Iron Ore Mine, Australia.tif
35cm image of West Angelas Iron Ore Mine, Australia taken by Umbra

SAR technology has provided terrain structural information to geologists for mineral exploration, [1] oil spill [2] boundaries on water to environmentalists, sea state and ice hazard maps to navigators, [3] and intelligence, surveillance, reconnaissance and detecting information to military operations. [4]

Conventional SAR systems are limited in that a wide swath can only be achieved at the expense of a degraded azimuth resolution. Since wide coverage swaths and high resolution output are both important, this poses challenges and contradicting requirements on the design of space-borne SAR systems and related new algorithms.

Problem statement and basics

Problem statement

State-of-the-art high-resolution SAR systems are rather limited with regarding to their acquisition capability.[ citation needed ]

Requirements for spaceborne SAR Table1.tif
Requirements for spaceborne SAR

An example is TerraSAR-X, which is a German Earth-Observation satellite. Its major payload is an X-band (3.1 cm) radar sensor, with different modes of operation, which allows it to provide multiple imaging modes for recording images with different swath width, resolution and polarizations, see the figure for more details. In stripmap mode (spatial resolution of 3m), it needs 10 weeks to map global Earth's landmass. This limitation also posed a challenge in the design of the TanDEM-X, which is the twin satellite of TerraSAR-X. Flying in close formation only a few hundred metres apart, the two satellites are imaging the terrain below them simultaneously but from different angles. It requires one year to achieve one global interferometric acquisition of the Earth's landmass for TanDEM-X.

To overcome this, some scientists propose Tandem-L mission, which is a prominent example. [5] The Tandem-L mission concept is based on the use of two satellites that operate in L-band (24 cm wavelength), which has much longer wavelength compared to X-band. Longer wavelength allows it to fulfills the requirements for a tomographic measurement of the three-dimensional structure of vegetation and ice regions, also for large scale surveying of deformations with millimeter accuracy.

The future SAR missions may require a mapping capability one or even two orders of magnitude better than that of Tandem-L, whose goal is the investigation of dynamic processes on the Earth's surface. For this, an extremely powerful SAR instrument is required, capable of mapping the whole Earth's surface twice per week, in full polarization and with a spatial resolution well below 10 m. On the other hand, some other missions requires a much higher spatial resolution.

Basics

Given a single satellite, frequent and seamless coverage can only be achieved if a wide swath is imaged.

The swath width constrains the pulse repetition interval (PRI) or equivalently pulse repetition frequency (PRF), which equals to 1/PRI in the following way.

If the SAR sensor flying with speed , and there are two targets P and Q on the ground, the azimuth angle is calculated as . For small bandwidth SARs, the usual linear relation between azimuth frequency and angle with wavelength is described as follows:

In order to optimize performance and control the range of ambiguities, the PRI must be larger than the time that it takes to collect returns from the entire illuminated swath. However, on the other hand, to avoid huge azimuth ambiguity levels, a large PRI implies the adoption of a small Doppler bandwidth and constrains the achievable azimuth resolution. [6]

ScanSAR With multiple azimuth channels

One example is the combination of displaced phase centers in azimuth with the low resolution ScanSAR or terrain observation by progressive scans (TOPS) mode. [7]

As in classical ScanSAR, [8] azimuth bursts are used to map several swaths. Innovative operation of multichannel SAR systems in burst modes is shown in the second image, where multichannel configurations with a single transmit ("Tx") antenna and several receiving ("Rx") antennas are considered, Tx and Rx can be realized on separate platforms as well as separately on the same platform or even integrated in the same antenna by transmit-and-receive (T/R) module technology.

One of the key steps is multichannel azimuth processing. A multichannel SAR in azimuth can be interpreted as a linear system of filter functions which characterize the individual apertures’ impulse responses in amplitude and phase in dependence on the Doppler frequency . A general system model is shown in the left.

characterizes the scene, while is the azimuth impulse response of a single-aperture system, yieldingwhich gives the equivalent monostatic SAR signal. The functions represent the channel between the transmitter (Tx) and each receiver (Rx ) with respect to the monostatic impulse response, resulting in the respective multichannel SAR signal. Assuming a single transmitter and several receiver channels, the physical along-track distance between Rx and is given by Δx, while λ represents the carrier wavelength, represents the slant range, and andrepresent the velocities of the sensor and the beam on ground, respectively.

After reception, each signal is sampled in azimuth by the PRF, and hence, the maximum signal bandwidth is N⋅PRF according to the effective sampling rate. A compact characterization of the whole system is then given by the matrix , where one should note the dependence on the parameter PRF.

According to a generalized sampling theorem, N independent representations of a signal, each subsampled at 1/N of the signal's Nyquist frequency, allow for the unambiguous "reconstruction" of the original signal from the aliased Doppler spectra of the N representations. This means that any bandlimited signal is uniquely determined in terms of the responses or, equivalently, by the respective functions . This is valid independently of the spatial sample distribution as long as the samples do not coincide in space. Then, the inversion of yields a matrix that contains in its rows N functions each representing the filter for the multichannel processing of channel

The original signal is then recovered by filtering each channel with its appropriate "reconstruction" filter and subsequent coherent combination of all weighted receiver channels. The associated resolution loss from sharing the synthetic aperture among different swaths is compensated by collecting radar echoes with multiple displaced azimuth apertures.

A possible drawback of multichannel ScanSAR or TOPS approaches is the rather high Doppler centroid, [9] which is one of the most important parameters need to be estimated in computing SAR images. For some of the imaged targets, in case high resolution is desired. Moreover, high squint angles may also challenge co-registration in interferometric applications.

Single-channel SAR with multiple elevation beams

Besides multichannel ScanSAR, concepts based on the simultaneous recording of echoes of different pulses, transmitted by a wide beam illuminator and coming from different directions, are of great interest. [10]

Schematic of a multichannel receiver. The signal from each subaperture element is independently amplified, down converted, and digitized in the A/D (analog-to-digital converter). The digital processing enables flexible and adaptive beamforming a posteriori to signal reception. Schematic of a multi-channel receiver.tif
Schematic of a multichannel receiver. The signal from each subaperture element is independently amplified, down converted, and digitized in the A/D (analog-to-digital converter). The digital processing enables flexible and adaptive beamforming a posteriori to signal reception.

Because it has following benefits: Multiple apertures that are displaced in along-track can acquire additional samples along the synthetic aperture and meanwhile they enable an efficient suppression of azimuth ambiguities. Moreover, by controlling a highly directive receiver beam following the radar pulse as it travels on the ground, multiple channels in elevation can improve the SNR (signal noise ratio) without reducing the swath width. Also, advanced multi-channel SAR architectures can avoid the use of separate Tx and Rx antennas and enable an increase of the coverage area without the necessity to either lengthen the antenna or employ burst modes.

To achieve these benefits, the receiving antenna usually is split into multiple sub-apertures, and each is connected to its individual receiver channels. Then, the digitally recorded sub-aperture signals are combined in a spatiotemporal processor to simultaneously form multiple independent beams and to gather additional information about the direction of the scattered radar echoes.

An alternative to a planar array is a reflector antenna in combination with a digital feed array, which is of special interest for low frequency radar systems operating in L- and P-band (1 m), [11] combines the capabilities of digital beamforming with the high directivity of a large reflector antenna.

The reflector based architecture offers the potential to use all array elements simultaneously for the transmission of a broad beam without spill-over as desired for wide swath illumination.

For a paraboloidal reflector with a feed array close to the focal point, the signals which come from a given direction, usually correspond to only one or a very small subset of activated feed elements. And this property could reduce the implementation complexity and the costs of a digital beamforming radar.

However, this method also has its drawback that is the presence of blind ranges across the swath, as the radar cannot receive while it is transmitting.

Digital beamforming with reflector antenna

An interesting alternative to a planar antenna is a reflector, fed by a multichannel array. A parabolic reflector focuses an arriving plane wave on one or a small subset of feed elements. As the swath echoes arrive as plane waves from increasing look angles, one needs hence to only read out one feed element after the other to steer a high-gain beam in concert with the arriving echoes. A drawback of the multi-beam mode is the presence of blind ranges across the swath, as the radar cannot receive while it is transmitting. [12] [13]

Several innovative techniques using multiple receive apertures (‘Rx’) have been suggested to overcome the inherent limitations of conventional SAR to perform HRWS imaging. For optimum performance the relation between sensor velocity and the along-track offsets of the sub-apertures has to result in equally spaced effective phase centers thus leading to a uniform sampling of the received signal. This requires that optimal PRF equals to.

If a non-optimum PRF is chosen, the gathered samples are spaced non-uniformly. This requires a further processing step after down-conversion and quantization of the multi-aperture azimuth signal before conventional monostatic algorithms (such as the Range Doppler Algorithm (RDA) [14] and Chirp Scaling Algorithm (CSA) [15] ) can be applied. For this, the individual aperture signals are regarded as independent Rx channels (See lower figure, A/D stands for Analog to Digital Converter). The purpose of the azimuth processing is to combine channels, each has a bandwidth of , sub-sampled with to obtain a signal effectively sampled with , which achieve Nyquist criterion by averaging after the processing. So the output signal is free of aliasing in the optimum case.

Staggered-SAR

As stated in the previous section, that for multi-beam modes, it has a disadvantage which is the presence of blind ranges across the swath, as the radar cannot receive while it is transmitting. The staggered-SAR [16] can overcome this drawback by continuously varying the PRI in a cyclic manner, therefore allowing the imaging of a wide continuous swath without the need for a long antenna with multiple apertures.

This works because in satellite SAR imaging, antenna length and required azimuth resolution set an upper bound to the selected PRI. The PRI, in turn, will limit the maximum continuous swath width in slant range, which is only slightly influenced by the uncompressed transmitted pulse length . The continuous time interval that the radar echo can be received is upper bounded by the time interval between the end of a transmitted pulse and the beginning of next one, say . However, when the radar is transmitting, the device cannot receive radar echo, thus the radar can only receive a signal from targets that are included within . The difference between these two time intervals causes the blind range area which is given by , where is the speed of light in free space.

If the PRI is uniform, blind ranges will remain unchanged along azimuth, and after compression in azimuth, the image would have blind strips of width . If the PRI varies, although, the blind ranges still exist, but the position of these blind ranges also vary and will be different for each transmitted pulse, because transmitted pulse are only related to the preceding transmitted pulses. So when the overall synthetic aperture is taken into consideration, it turns out that at each slant range, only some of the transmitted pulses are missing, thus it is possible to obtain a SAR image over a wide continuous swath. The figure on the right shows the location of blind range of both fixed PRI and varied PRI.

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

<span class="mw-page-title-main">Doppler radar</span> Type of radar equipment

A Doppler radar is a specialized radar that uses the Doppler effect to produce velocity data about objects at a distance. It does this by bouncing a microwave signal off a desired target and analyzing how the object's motion has altered the frequency of the returned signal. This variation gives direct and highly accurate measurements of the radial component of a target's velocity relative to the radar. The term applies to radar systems in many domains like aviation, police radar detectors, navigation, meteorology, etc.

<span class="mw-page-title-main">Millimeter cloud radar</span> Weather radar tuned to cloud detection

Millimeter-wave cloud radars, also denominated cloud radars, are radar systems designed to monitor clouds with operating frequencies between 24 and 110 GHz. Accordingly, their wavelengths range from 1 mm to 1.11 cm, about ten times shorter than those used in conventional S band radars such as NEXRAD.

<span class="mw-page-title-main">Synthetic-aperture radar</span> Form of radar used to create images of landscapes

Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars. SAR is typically mounted on a moving platform, such as an aircraft or spacecraft, and has its origins in an advanced form of side looking airborne radar (SLAR). The distance the SAR device travels over a target during the period when the target scene is illuminated creates the large synthetic antenna aperture. Typically, the larger the aperture, the higher the image resolution will be, regardless of whether the aperture is physical or synthetic – this allows SAR to create high-resolution images with comparatively small physical antennas. For a fixed antenna size and orientation, objects which are further away remain illuminated longer – therefore SAR has the property of creating larger synthetic apertures for more distant objects, which results in a consistent spatial resolution over a range of viewing distances.

<span class="mw-page-title-main">Imaging radar</span> Application of radar which is used to create two-dimensional images

Imaging radar is an application of radar which is used to create two-dimensional images, typically of landscapes. Imaging radar provides its light to illuminate an area on the ground and take a picture at radio wavelengths. It uses an antenna and digital computer storage to record its images. In a radar image, one can see only the energy that was reflected back towards the radar antenna. The radar moves along a flight path and the area illuminated by the radar, or footprint, is moved along the surface in a swath, building the image as it does so.

<span class="mw-page-title-main">Pulse-Doppler radar</span> Type of radar system

A pulse-Doppler radar is a radar system that determines the range to a target using pulse-timing techniques, and uses the Doppler effect of the returned signal to determine the target object's velocity. It combines the features of pulse radars and continuous-wave radars, which were formerly separate due to the complexity of the electronics.

A radar system uses a radio-frequency electromagnetic signal reflected from a target to determine information about that target. In any radar system, the signal transmitted and received will exhibit many of the characteristics described below.

<span class="mw-page-title-main">Clutter (radar)</span> Unwanted echoes

Clutter is the unwanted return (echoes) in electronic systems, particularly in reference to radars. Such echoes are typically returned from ground, sea, rain, animals/insects, chaff and atmospheric turbulences, and can cause serious performance issues with radar systems. What one person considers to be unwanted clutter, another may consider to be a wanted target. However, targets usually refer to point scatterers and clutter to extended scatterers. The clutter may fill a volume or be confined to a surface. A knowledge of the volume or surface area illuminated is required to estimated the echo per unit volume, η, or echo per unit surface area, σ°.

Radar engineering is the design of technical aspects pertaining to the components of a radar and their ability to detect the return energy from moving scatterers — determining an object's position or obstruction in the environment. This includes field of view in terms of solid angle and maximum unambiguous range and velocity, as well as angular, range and velocity resolution. Radar sensors are classified by application, architecture, radar mode, platform, and propagation window.

Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).

Moving target indication (MTI) is a mode of operation of a radar to discriminate a target against the clutter. It describes a variety of techniques used for finding moving objects, like an aircraft, and filter out unmoving ones, like hills or trees. It contrasts with the modern stationary target indication (STI) technique, which uses details of the signal to directly determine the mechanical properties of the reflecting objects and thereby find targets whether they are moving or not.

Sea ice concentration is a useful variable for climate scientists and nautical navigators. It is defined as the area of sea ice relative to the total at a given point in the ocean. This article will deal primarily with its determination from remote sensing measurements.

Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses.

<span class="mw-page-title-main">Frequency ambiguity resolution</span> Radar signal processing

Frequency ambiguity resolution is used to find the true target velocity for medium pulse repetition frequency (PRF) radar systems. This is used with pulse-Doppler radar.

<span class="mw-page-title-main">Side looking airborne radar</span>

Side-looking airborne radar (SLAR) is an aircraft- or satellite-mounted imaging radar pointing perpendicular to the direction of flight. A squinted (nonperpendicular) mode is also possible. SLAR can be fitted with a standard antenna or an antenna using synthetic aperture.

Synthetic aperture ultrasound (SAU) imaging is an advanced form of imaging technology used to form high-resolution images in biomedical ultrasound systems. Ultrasound imaging has become an important and popular medical imaging method, as it is safer and more economical than computer tomography (CT) and magnetic resonance imaging (MRI).

<span class="mw-page-title-main">MIMO radar</span>

Multiple-input multiple-output (MIMO) radar is an extension of a traditional radar system to utilize multiple-inputs and multiple-outputs (antennas), similar to MIMO techniques used to increase the capacity of a radio link. MIMO radar is an advanced type of phased array radar employing digital receivers and waveform generators distributed across the aperture. MIMO radar signals propagate in a fashion similar to multistatic radar. However, instead of distributing the radar elements throughout the surveillance area, antennas are closely located to obtain better spatial resolution, Doppler resolution, and dynamic range. MIMO radar may also be used to obtain low-probability-of-intercept radar properties.

The railSAR, also known as the ultra-wideband Foliage Penetration Synthetic Aperture Radar, is a rail-guided, low-frequency impulse radar system that can detect and discern target objects hidden behind foliage. It was designed and developed by the U.S. Army Research Laboratory (ARL) in the early 1990s in order to demonstrate the capabilities of an airborne SAR for foliage and ground penetration. However, since conducting accurate, repeatable measurements on an airborne platform was both challenging and expensive, the railSAR was built on the rooftop of a four-story building within the Army Research Laboratory compound along a 104-meter laser-leveled track.

The boomSAR is a mobile ultra-wideband synthetic aperture radar system designed by the U.S. Army Research Laboratory (ARL) in the mid-1990s to detect buried landmines and IEDs. Mounted atop a 45-meter telescoping boom on a stable moving vehicle, the boomSAR transmits low frequency short-pulse UWB signals over the side of the vehicle to scope out a 300-meter range area starting 50 meters from the base of the boom. It travels at an approximate rate of 1 km/hour and requires a relatively flat road that is wide enough to accommodate its 18 ft-wide base.

Atmospheric correction for Interferometric Synthetic ApertureRadar (InSAR) technique is a set of different methods to remove artefact displacement from an interferogram caused by the effect of weather variables such as humidity, temperature, and pressure. An interferogram is generated by processing two synthetic-aperture radar images before and after a geophysical event like an earthquake. Corrections for atmospheric variations are an important stage of InSAR data processing in many study areas to measure surface displacement because relative humidity differences of 20% can cause inaccuracies of 10–14 cm InSAR due to varying delays in the radar signal. Overall, atmospheric correction methods can be divided into two categories: a) Using Atmospheric Phase Screen (APS) statistical properties and b) Using auxiliary (external) data such as GPS measurements, multi-spectral observations, local meteorological models, and global atmospheric models.

References

  1. Ramadan T M, Onsi H M. Use of ERS-2 SAR and Landsat TM images for geological mapping and mineral exploration of Sol Hamid area, south eastern desert, Egypt[C]//Workshop on application of SAR polarimetry and polarimetric interferometry. National Authority for Remote Sensing and Space Science. Egypt. 2003.
  2. Kale K V. Advances in Computer Vision and Information Technology[M]. IK International Pvt Ltd, 2008.
  3. Wang L, Scott K A, Xu L, et al. Sea Ice Concentration Estimation During Melt From Dual-Pol SAR Scenes Using Deep Convolutional Neural Networks: A Case Study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4524-4533.
  4. Board N S. C4ISR for Future Naval Strike Groups[M]. National Academies Press, 2006.
  5. http://www.dlr.de/hr/en/Portaldata/32/Resources/dokumente/broschueren/Tandem-L_web_Broschuere2014_en.pdf [ bare URL PDF ]
  6. Guarnieri A M. Adaptive removal of azimuth ambiguities in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 625-633.
  7. Gebert, Nicolas, Gerhard Krieger, and Alberto Moreira. "Multichannel azimuth processing in ScanSAR and TOPS mode operation." IEEE Transactions on Geoscience and Remote Sensing 48.7 (2010): 2994-3008.
  8. Tomiyasu K. Conceptual performance of a satellite borne, wide swath synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1981 (2): 108-116.
  9. Cafforio C, Guccione P, Guarnieri A M. Doppler centroid estimation for ScanSAR data[J]. IEEE transactions on geoscience and remote sensing, 2004, 42(1): 14-23.
  10. Krieger, Gerhard, et al. "Advanced concepts for ultra-wide-swath SAR imaging." Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR). Vol. 2. VDE, 2008.
  11. "Radar Bands and Wavelengths".
  12. Gebert N, Krieger G, Moreira A. High Resolution Wide Swath SAR Imaging with Digital Beamforming–Performance Analysis, Optimization, System Design[J]. EUSAR 2006, 2006.
  13. Krieger, Gerhard, Nicolas Gebert, and Alberto Moreira. "Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing." IEEE Transactions on Geoscience and Remote Sensing 46.1 (2008): 31-46.
  14. Wu C, Jin M. Modeling and a correlation algorithm for spaceborne SAR signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982 (5): 563-575.
  15. Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786-799.
  16. Villano, Michelangelo, Gerhard Krieger, and Alberto Moreira. "Staggered SAR: High-resolution wide-swath imaging by continuous PRI variation." IEEE Transactions on Geoscience and Remote Sensing 52.7 (2014): 4462-4479.