Hippocampal replay

Last updated

Hippocampal replay is a phenomenon observed in rats, mice, [1] cats, rabbits, [2] songbirds [3] and monkeys. [4] During sleep or awake rest, replay refers to the re-occurrence of a sequence of cell activations that also occurred during activity, but the replay has a much faster time scale. It may be in the same order, or in reverse. Cases were also found where a sequence of activations occurs before the actual activity, but it is still the same sequence. This is called preplay.

Contents

The phenomenon has mostly been observed in the hippocampus, a brain region associated with memory and spatial navigation. Specifically, the cells that exhibit this behavior are place cells, characterized by reliably increasing their activity when the animal is in a certain location in space. During navigation, the place cells fire in a sequence according to the path of the animal. In a replay instance, the cells are activated as if in response to the same spatial path, but at a much faster rate than the animal actually moved in.

Background

Place cell activity was already well established when the first study explored this phenomenon in 1989. [5] They showed that neural activity of single place cells during sleep resembled the activity during the awake state. This activity was greater than that of other cells and this study was only the first step towards understanding replay. Subsequent studies showed that large groups of cells also demonstrated this type of increased activity during sleep. In addition, it was discovered that the order of activity of place cells was also replicated during sleep. [6] Firing sequences of three and more neurons observed in the hippocampus during locomotion were shown to recur selectively during subsequent slow-wave sleep more likely than during the preceding sleep, and the sequence replay was compressed during high frequency oscillations. [7] These high frequency field oscillations called ripples were observed in the sleep state and later shown to play a causal role in memory consolidation. [8] [9]

The next step was the discovery of replay during the awake state. In 1999, ten years after the initial discovery, neural recordings in the awake state were also shown to have replay activity. [10] It is considerably more difficult to detect this activity in the awake state and several methods including Bayesian decoding have been used to quantify replay events that occur during short wave ripples. [11] Recent advances include finding that replay can occur in reverse [12] and that it has also been found to occur in different environments. [13] The role of replay in memory consolidation in these different conditions and environments is still being explored and several theories attempt to answer this question.

Location and behavioral state

Replay can occur in several different behavioral, physiological, and environmental conditions. The first distinction between awake and sleep states may represent different roles in memory consolidation. In the sleep state, the ripple events and place cell activity similar to that of the activity in the environment define the replay events. In the sleep state, there is also a distinction between REM (rapid eye movement) and SWS (slow wave sleep) which has implications for replay events. [14] [15] During SWS the place cells fire in a sequential order indicating replay and possibly indicate memory consolidation. However, during REM sleep where dreams occur in humans, replay events also occurred suggesting a possible role for place cells in dreams.

In the awake state the same activity occurs, however it is more difficult to detect and the animal must be in a resting state. Lastly, there are many environments for replay events in the awake animal. The length of the track can be short or long and still be replayed by a population of place cells. [16] In addition, replay of a single environment can occur when the animal is in that environment or in different environments. [17] [18] This may show that consolidation of memory is a persistent process that may occur in several different types of environments and behavioral conditions. The robustness of the replay events indicates the importance of this process.

Preplay

As mentioned above, the sequential activation of hippocampal place cells according to their place fields may occur during rest periods before the animal is actually traversing the activated path, even if the animal has never experienced it before. [19] This suggests that hippocampal activation during rest may have a function not only in memory consolidation and retrieval, but also in planning: it contributes to the organization of the network for improving the encoding of future events.

Sensory cue for activation

Sensory stimuli can induce replay events or enhance the replay: [20] in the awake state, replay often begins from the current location and continue either forward or backward in time, and nearby locations are more likely to be the place fields of neurons exhibiting replay than far away locations. This is like cued memory retrieval, where a sensory input triggers retrieval of similar or relevant memories. The cue may even trigger a replay in a different environment, if the place cells cued represent a location in a different environment in addition to the current location of the animal.

Interaction with cortex

Several studies are beginning to understand that replay may not only occur in the hippocampus. Replay has been linked to coherent activity in cortical regions of the default mode network. [21] After learning, similar replay events occurred in both the thalamus and cortex. [22] In addition, the visual cortex showed population activity that was both coordinated into discrete time regions and that it occurred simultaneously with activity in the hippocampus. [23] Concurrent re-activation in the hippocampus and cortex may demonstrate that memory consolidation requires cortical input/output to maintain a memory. This hypothesis fits well with the idea that the cortex plays an integral role in memory retrieval after consolidation occurs. Therefore, hippocampal replay may play the role of information transfer between the hippocampus and cortex, yet this idea requires further verification.

Function in memory

Hippocampal replay in the awake state has been implicated, though not demonstrated, to correlate with performance in navigation tasks after the replay event. [24] Replay may play a role in consolidation of memories related to spatial location, [25] although a clear causal relationship between replay and memory consolidation is still unproven. Furthermore, replay also seems to be related to memory retrieval: it is activated by cues that also trigger memory retrieval, and in situations that require it, such as planning a trajectory based on the consequences of past choices. This relationship is also still only correlative, but there are studies showing evidence for the necessity of replay in successful memory retrieval. [26]

Replay is likely to participate in both the consolidation of memories and in building a cognitive map. Replay is also likely to play an important role in generating and maintaining a value map, which is a proposed variation of cognitive map in which memories are reinforced according to their values. [27]

In studies done to monitor the patterns of the hippocampal replay of events happening in the minds of the rats, it was discovered that they rely heavily on long term re-playable memories for their daily lives. To determine if the animals could really retain the memories scientists set up a series of episodic events (i.e. a series of tunnels, a maze, a track full of twists and turns) to visualize the neuron activity as the rat completes its round around the new surroundings. The chemogenetic activating drug clozapine N-oxide (CNO), but not vehicle, reversibly impairs episodic memory replay in rats previously injected bilaterally in the hippocampus with a recombinant viral vector containing an inhibitory designer receptor exclusively activated by a designer drug (DREADD; AAV8-hSyn-hM4Di-mCherry). By contrast, two non-episodic memory assessments are unaffected by CNO, showing selectivity of this hippocampal-dependent impairment. [28]

Related Research Articles

<span class="mw-page-title-main">Entorhinal cortex</span> Area of the temporal lobe of the brain

The entorhinal cortex (EC) is an area of the brain's allocortex, located in the medial temporal lobe, whose functions include being a widespread network hub for memory, navigation, and the perception of time. The EC is the main interface between the hippocampus and neocortex. The EC-hippocampus system plays an important role in declarative (autobiographical/episodic/semantic) memories and in particular spatial memories including memory formation, memory consolidation, and memory optimization in sleep. The EC is also responsible for the pre-processing (familiarity) of the input signals in the reflex nictitating membrane response of classical trace conditioning; the association of impulses from the eye and the ear occurs in the entorhinal cortex.

Multiple hypotheses explain the possible connections between sleep and learning in humans. Research indicates that sleep does more than allow the brain to rest; it may also aid the consolidation of long-term memories.

<span class="mw-page-title-main">Hippocampus</span> Vertebrate brain region involved in memory consolidation

The hippocampus is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, and plays important roles in the consolidation of information from short-term memory to long-term memory, and in spatial memory that enables navigation. The hippocampus is located in the allocortex, with neural projections into the neocortex, in humans as well as other primates. The hippocampus, as the medial pallium, is a structure found in all vertebrates. In humans, it contains two main interlocking parts: the hippocampus proper, and the dentate gyrus.

<span class="mw-page-title-main">Fear conditioning</span> Behavioral paradigm in which organisms learn to predict aversive events

Pavlovian fear conditioning is a behavioral paradigm in which organisms learn to predict aversive events. It is a form of learning in which an aversive stimulus is associated with a particular neutral context or neutral stimulus, resulting in the expression of fear responses to the originally neutral stimulus or context. This can be done by pairing the neutral stimulus with an aversive stimulus. Eventually, the neutral stimulus alone can elicit the state of fear. In the vocabulary of classical conditioning, the neutral stimulus or context is the "conditional stimulus" (CS), the aversive stimulus is the "unconditional stimulus" (US), and the fear is the "conditional response" (CR).

An engram is a unit of cognitive information imprinted in a physical substance, theorized to be the means by which memories are stored as biophysical or biochemical changes in the brain or other biological tissue, in response to external stimuli.

<span class="mw-page-title-main">Place cell</span> Place-activated hippocampus cells found in some mammals

A place cell is a kind of pyramidal neuron in the hippocampus that becomes active when an animal enters a particular place in its environment, which is known as the place field. Place cells are thought to act collectively as a cognitive representation of a specific location in space, known as a cognitive map. Place cells work with other types of neurons in the hippocampus and surrounding regions to perform this kind of spatial processing. They have been found in a variety of animals, including rodents, bats, monkeys and humans.

Explicit memory is one of the two main types of long-term human memory, the other of which is implicit memory. Explicit memory is the conscious, intentional recollection of factual information, previous experiences, and concepts. This type of memory is dependent upon three processes: acquisition, consolidation, and retrieval.

<span class="mw-page-title-main">Slow-wave sleep</span> Period of sleep in humans and other animals

Slow-wave sleep (SWS), often referred to as deep sleep, is the third stage of non-rapid eye movement sleep (NREM), where electroencephalography activity is characterised by slow delta waves.

Theta waves generate the theta rhythm, a neural oscillation in the brain that underlies various aspects of cognition and behavior, including learning, memory, and spatial navigation in many animals. It can be recorded using various electrophysiological methods, such as electroencephalogram (EEG), recorded either from inside the brain or from electrodes attached to the scalp.

The trisynaptic circuit or trisynaptic loop is a relay of synaptic transmission in the hippocampus. The circuit was initially described by the neuroanatomist Santiago Ramon y Cajal, in the early twentieth century, using the Golgi staining method. After the discovery of the trisynaptic circuit, a series of research has been conducted to determine the mechanisms driving this circuit. Today, research is focused on how this loop interacts with other parts of the brain, and how it influences human physiology and behaviour. For example, it has been shown that disruptions within the trisynaptic circuit lead to behavioural changes in rodent and feline models.

Memory consolidation is a category of processes that stabilize a memory trace after its initial acquisition. A memory trace is a change in the nervous system caused by memorizing something. Consolidation is distinguished into two specific processes. The first, synaptic consolidation, which is thought to correspond to late-phase long-term potentiation, occurs on a small scale in the synaptic connections and neural circuits within the first few hours after learning. The second process is systems consolidation, occurring on a much larger scale in the brain, rendering hippocampus-dependent memories independent of the hippocampus over a period of weeks to years. Recently, a third process has become the focus of research, reconsolidation, in which previously consolidated memories can be made labile again through reactivation of the memory trace.

The cellular transcription factor CREB helps learning and the stabilization and retrieval of fear-based, long-term memories. This is done mainly through its expression in the hippocampus and the amygdala. Studies supporting the role of CREB in cognition include those that knock out the gene, reduce its expression, or overexpress it.

<span class="mw-page-title-main">Sleep and memory</span> Relationship between sleep and memory

The relationship between sleep and memory has been studied since at least the early 19th century. Memory, the cognitive process of storing and retrieving past experiences, learning and recognition, is a product of brain plasticity, the structural changes within synapses that create associations between stimuli. Stimuli are encoded within milliseconds; however, the long-term maintenance of memories can take additional minutes, days, or even years to fully consolidate and become a stable memory that is accessible. Therefore, the formation of a specific memory occurs rapidly, but the evolution of a memory is often an ongoing process.

<span class="mw-page-title-main">Memory</span> Faculty of mind to store and retrieve data

Memory is the faculty of the mind by which data or information is encoded, stored, and retrieved when needed. It is the retention of information over time for the purpose of influencing future action. If past events could not be remembered, it would be impossible for language, relationships, or personal identity to develop. Memory loss is usually described as forgetfulness or amnesia.

While the cellular and molecular mechanisms of learning and memory have long been a central focus of neuroscience, it is only in recent years that attention has turned to the epigenetic mechanisms behind the dynamic changes in gene transcription responsible for memory formation and maintenance. Epigenetic gene regulation often involves the physical marking of DNA or associated proteins to cause or allow long-lasting changes in gene activity. Epigenetic mechanisms such as DNA methylation and histone modifications have been shown to play an important role in learning and memory.

<span class="mw-page-title-main">Neuroscience of sleep</span> Study of the neuroscientific and physiological basis of the nature of sleep

The neuroscience of sleep is the study of the neuroscientific and physiological basis of the nature of sleep and its functions. Traditionally, sleep has been studied as part of psychology and medicine. The study of sleep from a neuroscience perspective grew to prominence with advances in technology and the proliferation of neuroscience research from the second half of the twentieth century.

<span class="mw-page-title-main">Large irregular activity</span>

Large (amplitude) irregular activity (LIA), refers to one of two local field states that have been observed in the hippocampus. The other field state is that of the theta rhythm. The theta state is characterised by a steady slow oscillation of around 6–7 Hz. LIA has a predominantly lower oscillation frequency but contains some sharp spikes, called sharp waves of a higher frequency than that of theta. LIA accompanies the small irregular activity state to which the term LIA has been used to describe overall.

Sharp waves and ripples (SWRs) are oscillatory patterns produced by extremely synchronised activity of neurons in the mammalian hippocampus and neighbouring regions which occur spontaneously in idle waking states or during NREM sleep. They can be observed with a variety of imaging methods, such as EEG. They are composed of large amplitude sharp waves in local field potential and produced by tens of thousands of neurons firing together within 30–100 ms window. They are some of the most synchronous oscillations patterns in the brain, making them susceptible to pathological patterns such as epilepsy.They have been extensively characterised and described by György Buzsáki and have been shown to be involved in memory consolidation in NREM sleep and the replay of memories acquired during wakefulness.

The hippocampus participates in the encoding, consolidation, and retrieval of memories. The hippocampus is located in the medial temporal lobe (subcortical), and is an infolding of the medial temporal cortex. The hippocampus plays an important role in the transfer of information from short-term memory to long-term memory during encoding and retrieval stages. These stages do not need to occur successively, but are, as studies seem to indicate, and they are broadly divided in the neuronal mechanisms that they require or even in the hippocampal areas that they seem to activate. According to Gazzaniga, "encoding is the processing of incoming information that creates memory traces to be stored." There are two steps to the encoding process: "acquisition" and "consolidation". During the acquisition process, stimuli are committed to short term memory. Then, consolidation is where the hippocampus along with other cortical structures stabilize an object within long term memory, which strengthens over time, and is a process for which a number of theories have arisen to explain the underlying mechanism. After encoding, the hippocampus is capable of going through the retrieval process. The retrieval process consists of accessing stored information; this allows learned behaviors to experience conscious depiction and execution. Encoding and retrieval are both affected by neurodegenerative and anxiety disorders and epilepsy.

Gina R. Poe is an American neuroscientist specializing in the study of sleep and its effect on memory and learning. Her findings have shown that the absence of noradrenaline and low levels of serotonin during sleep spindles allow the brain to form new memories during REM, as well as restructure old memory circuits to allow for more learning during later waking periods. She currently works as a professor at the University of California, Los Angeles (UCLA).

References

  1. Buhry L, Azizi AH, Cheng S (2011). "Reactivation, replay, and preplay: how it might all fit together". Neural Plasticity. 2011: 1–11. doi: 10.1155/2011/203462 . PMC   3171894 . PMID   21918724.
  2. Nokia MS, Penttonen M, Wikgren J (August 2010). "Hippocampal ripple-contingent training accelerates trace eyeblink conditioning and retards extinction in rabbits". The Journal of Neuroscience. 30 (34): 11486–92. doi:10.1523/JNEUROSCI.2165-10.2010. PMC   6633352 . PMID   20739570.
  3. Dave AS, Margoliash D (October 2000). "Song replay during sleep and computational rules for sensorimotor vocal learning". Science. 290 (5492): 812–6. Bibcode:2000Sci...290..812D. doi:10.1126/science.290.5492.812. PMID   11052946.
  4. Skaggs WE, McNaughton BL, Permenter M, Archibeque M, Vogt J, Amaral DG, Barnes CA (August 2007). "EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus". Journal of Neurophysiology. 98 (2): 898–910. doi:10.1152/jn.00401.2007. PMID   17522177.
  5. Pavlides C, Winson J (August 1989). "Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes". The Journal of Neuroscience. 9 (8): 2907–18. doi:10.1523/JNEUROSCI.09-08-02907.1989. PMC   6569689 . PMID   2769370.
  6. Skaggs WE, McNaughton BL (March 1996). "Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience". Science. 271 (5257): 1870–3. Bibcode:1996Sci...271.1870S. doi:10.1126/science.271.5257.1870. PMID   8596957. S2CID   23694471.
  7. Nádasdy Z, Hirase H, Czurkó A, Csicsvari J, Buzsáki G (November 1999). "Replay and time compression of recurring spike sequences in the hippocampus". The Journal of Neuroscience. 19 (21): 9497–507. doi:10.1523/JNEUROSCI.19-21-09497.1999. PMC   6782894 . PMID   10531452.
  8. Eschenko O, Ramadan W, Mölle M, Born J, Sara SJ (April 2008). "Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning". Learning & Memory. 15 (4): 222–8. doi:10.1101/lm.726008. PMC   2327264 . PMID   18385477.
  9. Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB (October 2009). "Selective suppression of hippocampal ripples impairs spatial memory". Nature Neuroscience. 12 (10): 1222–3. doi:10.1038/nn.2384. PMID   19749750. S2CID   23637142.
  10. Kudrimoti HS, Barnes CA, McNaughton BL (May 1999). "Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics". The Journal of Neuroscience. 19 (10): 4090–101. doi:10.1523/JNEUROSCI.19-10-04090.1999. PMC   6782694 . PMID   10234037.
  11. Davidson TJ, Kloosterman F, Wilson MA (August 2009). "Hippocampal replay of extended experience". Neuron. 63 (4): 497–507. doi:10.1016/j.neuron.2009.07.027. PMC   4364032 . PMID   19709631.
  12. Karlsson MP, Frank LM (July 2009). "Awake replay of remote experiences in the hippocampus". Nature Neuroscience. 12 (7): 913–8. doi:10.1038/nn.2344. PMC   2750914 . PMID   19525943.
  13. Carr MF, Jadhav SP, Frank LM (February 2011). "Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval". Nature Neuroscience. 14 (2): 147–53. doi:10.1038/nn.2732. PMC   3215304 . PMID   21270783.
  14. Louie K, Wilson MA (January 2001). "Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep". Neuron. 29 (1): 145–56. doi: 10.1016/S0896-6273(01)00186-6 . PMID   11182087.
  15. Lee AK, Wilson MA (December 2002). "Memory of sequential experience in the hippocampus during slow wave sleep". Neuron. 36 (6): 1183–94. doi: 10.1016/s0896-6273(02)01096-6 . PMID   12495631.
  16. Davidson TJ, Kloosterman F, Wilson MA (August 2009). "Hippocampal replay of extended experience". Neuron. 63 (4): 497–507. doi:10.1016/j.neuron.2009.07.027. PMC   4364032 . PMID   19709631.
  17. Diba K, Buzsáki G (October 2007). "Forward and reverse hippocampal place-cell sequences during ripples". Nature Neuroscience. 10 (10): 1241–2. doi:10.1038/nn1961. PMC   2039924 . PMID   17828259.
  18. Karlsson MP, Frank LM (July 2009). "Awake replay of remote experiences in the hippocampus". Nature Neuroscience. 12 (7): 913–8. doi:10.1038/nn.2344. PMC   2750914 . PMID   19525943.
  19. Dragoi G, Tonegawa S (January 2011). "Preplay of future place cell sequences by hippocampal cellular assemblies". Nature. 469 (7330): 397–401. Bibcode:2011Natur.469..397D. doi:10.1038/nature09633. PMC   3104398 . PMID   21179088.
  20. Carr MF, Jadhav SP, Frank LM (February 2011). "Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval". Nature Neuroscience. 14 (2): 147–53. doi:10.1038/nn.2732. PMC   3215304 . PMID   21270783.
  21. Higgins C, Liu Y, Vidaurre D, Kurth-Nelson Z, Dolan R, Behrens T, Woolrich M (March 2021). "Replay bursts in humans coincide with activation of the default mode and parietal alpha networks" (PDF). Neuron. 109 (5): 882–893. doi: 10.1016/j.neuron.2020.12.007 . PMC   7927915 . PMID   33357412.
  22. Ribeiro S, Gervasoni D, Soares ES, Zhou Y, Lin SC, Pantoja J, Lavine M, Nicolelis MA (January 2004). "Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas". PLOS Biology. 2 (1): E24. doi: 10.1371/journal.pbio.0020024 . PMC   314474 . PMID   14737198.
  23. Ji D, Wilson MA (January 2007). "Coordinated memory replay in the visual cortex and hippocampus during sleep". Nature Neuroscience. 10 (1): 100–7. doi:10.1038/nn1825. PMID   17173043. S2CID   205431067.
  24. Carr MF, Jadhav SP, Frank LM (February 2011). "Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval". Nature Neuroscience. 14 (2): 147–53. doi:10.1038/nn.2732. PMC   3215304 . PMID   21270783.
  25. Derdikman D, Moser MB (March 2010). "A dual role for hippocampal replay". Neuron. 65 (5): 582–4. doi: 10.1016/j.neuron.2010.02.022 . PMID   20223195.
  26. Dupret D, O'Neill J, Pleydell-Bouverie B, Csicsvari J (August 2010). "The reorganization and reactivation of hippocampal maps predict spatial memory performance". Nature Neuroscience. 13 (8): 995–1002. doi:10.1038/nn.2599. PMC   2923061 . PMID   20639874.
  27. Bhattarai B, Lee JW, Jung MW (December 23, 2019). "Distinct effects of reward and navigation history on hippocampal forward and reverse replays". Proceedings of the National Academy of Sciences of the United States of America. 117 (1): 689–697. doi: 10.1073/pnas.1912533117 . PMC   6955321 . PMID   31871185.
  28. Panoz-Brown D, Iyer V, Carey LM, Sluka CM, Rajic G, Kestenman J, Gentry M, Brotheridge S, Somekh I, Corbin HE, Tucker KG, Almeida B, Hex SB, Garcia KD, Hohmann AG, Crystal JD (May 2018). "Replay of Episodic Memories in the Rat". Current Biology. 28 (10): 1628–1634.e7. doi:10.1016/j.cub.2018.04.006. PMC   5964044 . PMID   29754898.