Hol118 family

Last updated

The Listeria Phage A118 Holin (Hol118) Family (TC# 1.E.21) is a group of transporters belonging to the Holin Superfamily V. [1] A representative list of proteins belonging to the Hol118 family can be found in the Transporter Classification Database.

Contents

Listeria monocytogenes bacteriophage A118 encodes a native holin, hol118, of 93 amino acyl residues (aas) exhibiting 3 putative transmembrane segments (TMSs). When cloned into lambda phage devoid of the S holin, it caused very late cell lysis, beginning 80 min. after induction. [2] Hol118 appeared in the cytoplasmic membrane shortly after infection. A second translational start codon (AUG-3) at nucleotide position 40 in the gene gives rise to a second gene product of 83 aas lacking TMS-1 (Hol118(83)). It is produced with the full length protein, appears in the membrane, but cannot support lambda lysis and inhibits lysis by Hol118. This dominant inhibitor presumably determines the time of lysis. [2] A homologue is found in L. innocua.

The reaction probably catalyzed is:

small molecules + autolysin (in) → small molecules + autolysin (out)

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Lambda phage</span> Bacteriophage that infects Escherichia coli

Enterobacteria phage λ is a bacterial virus, or bacteriophage, that infects the bacterial species Escherichia coli. It was discovered by Esther Lederberg in 1950. The wild type of this virus has a temperate life cycle that allows it to either reside within the genome of its host through lysogeny or enter into a lytic phase, during which it kills and lyses the cell to produce offspring. Lambda strains, mutated at specific sites, are unable to lysogenize cells; instead, they grow and enter the lytic cycle after superinfecting an already lysogenized cell.

<span class="mw-page-title-main">Lytic cycle</span> Cycle of viral reproduction

The lytic cycle is one of the two cycles of viral reproduction, the other being the lysogenic cycle. The lytic cycle results in the destruction of the infected cell and its membrane. Bacteriophages that only use the lytic cycle are called virulent phages.

<span class="mw-page-title-main">Lysin</span>

Lysins, also known as endolysins or murein hydrolases, are hydrolytic enzymes produced by bacteriophages in order to cleave the host's cell wall during the final stage of the lytic cycle. Lysins are highly evolved enzymes that are able to target one of the five bonds in peptidoglycan (murein), the main component of bacterial cell walls, which allows the release of progeny virions from the lysed cell. Cell-wall-containing Archaea are also lysed by specialized pseudomurein-cleaving lysins, while most archaeal viruses employ alternative mechanisms. Similarly, not all bacteriophages synthesize lysins: some small single-stranded DNA and RNA phages produce membrane proteins that activate the host's autolytic mechanisms such as autolysins.

Holins are a diverse group of small proteins produced by dsDNA bacteriophages in order to trigger and control the degradation of the host's cell wall at the end of the lytic cycle. Holins form pores in the host's cell membrane, allowing lysins to reach and degrade peptidoglycan, a component of bacterial cell walls. Holins have been shown to regulate the timing of lysis with great precision. Over 50 unrelated gene families encode holins, making them the most diverse group of proteins with common function. Together with lysins, holins are being studied for their potential use as antibacterial agents.

The Phi11 Holin Family constitutes the Holin Superfamily I.

The Phage 21 S Family is a member of the Holin Superfamily II.

The HP1 Holin Family is a member of the Holin Superfamily II. Proteins in this family are typically found to contain two transmembrane segments (TMSs) and range between 70 and 80 amino acyl residues (aas) in length. A representative list of proteins belonging to the HP1 holin family can be found in the Transporter Classification Database.

The Lambda Holin S Family is a group of integral membrane transporter proteins belonging to the Holin Superfamily III. Members of this family generally consist of the characteristic three transmembrane segments (TMSs) and are of 110 amino acyl residues (aas) in length, on average. A representative list of members belonging to this family can be found in the Transporter Classification Database.

The PRD1 Phage P35 Holin Family is a member of Holin Superfamily III. The prototype for this family is the lipid-containing PRD1 enterobacterial phage holin protein P35 encoded by gene XXXV (orfT). It is a component of a typical holin-endolysin system which functions to lyse the host bacterial cell.

The Pseudomonas aeruginosa Hol Holin Family is a group of transporters belonging to the Holin Superfamily III.

The Holin superfamily V is a superfamily of integral membrane transport proteins. It is one of the seven different holin superfamilies in total. In general, these proteins are thought to play a role in regulated cell death, although functionality varies between families and individual members. The Holin superfamily V includes the TC families:

The Bacillus subtilis φ29 Holin Family is a group of transporters belonging to the Holin Superfamily IV. A representative list of members belonging to the φ29 holin family can be found in the Transporter Classification Database.

The T4 Holin Family is a group of putative pore-forming proteins that does not belong to one of the seven holin superfamilies. T-even phage such as T4 use a holin-endolysin system for host cell lysis. Although the endolysin of phage T4 encoded by the e gene was identified in 1961, the holin was not characterized until 2001. A representative list of proteins belonging to the T4 holin family can be found in the Transporter Classification Database.

The Lactococcus lactis Phage r1t Holin Family is a family of putative pore-forming proteins that typically range in size between about 65 and 95 amino acyl residues (aas) in length, although a few r1t holins have been found to be significantly larger. Phage r1t holins exhibit between 2 and 4 transmembrane segments (TMSs), with the 4 TMS proteins resulting from an intragenic duplication of a 2 TMS region. A representative list of the proteins belonging to the r1t holin family can be found in the Transporter Classification Database.

The Bacterophase Dp-1 Holin Family is a family of proteins present in several Gram-positive bacteria and their phage. The genes coding for the lytic system of the pneumococcal phage, Dp-1, has been cloned and characterized. The holin of phage Dp-1 is 74 amino acyl residues (aas) long with two putative transmembrane segments (TMSs). The lytic enzyme of Dp-1 (Pal), an N-acetyl-muramoyl-L-alanine amidase, shows a modular organization similar to that described for the lytic enzymes of Streptococcus pneumoniae and its bacteriophage in which change in the order of the functional domains changes the enzyme specificity. A representative list of proteins belonging to the Dp-1 family can be found in the Transporter Classification Database.

The SPP1 Holin Family consists of proteins of between 90 and 160 amino acyl residues (aas) in length that exhibit two transmembrane segments (TMSs). SPP1 is a double-stranded DNA phage that infects the Gram-positive bacteria. Although annotated as holins, members of the SPP1 family are not yet functionally characterized. A representative list of proteins belonging to the SPP1 Holin family can be found in Transporter Classification Database.

The Mycobacterial Phage PBI1 Gp36 Holin Family consists of a single protein, Gp36 of Mycobacterial phage PBI1 identified by Castalao et al. (2012). Gp36 is 116 amino acyl residues (aas) in length and exhibits 2 transmembrane segments (TMSs). While annotated as a holin, this protein has not been functionally characterized.

The Putative 3-4 TMS Transglycosylase-associated Holin Family is believed to be a group of holins that does not belong to one of the seven holin superfamilies. Homologues include thousands of diverse phage and bacterial proteins between 80 and 140 amino acyl residues (aas) in length that exhibit 3 to 4 transmembrane segments (TMSs). These proteins are holin-like in their size and topology and are designated 'Transglycosylase-associated', 'Putative holin', 'Phage-like transmembrane protein', 'YeaQ protein', etc. in the NCBI protein database. As of early 2016, they remain functionally uncharacterized. They derive from a wide range of bacterial and archaeal phyla including both Gram-negative and Gram-positive bacteria. These proteins are related to the RDD family in the conserved domain database. A representative list of proteins belonging to the T-A Hol family can be found in the Transporter Classification Database.

The XanthomonasPhage Holin (XanPHol) Family consists of a single protein of 64 amino acyl residues (aas) in length with 2 transmembrane segments (TMSs). It is a putative uncharacterized protein from Xanthomonas phage Xp15. This protein corresponds to sequence 68 from patent US 7919601. As of March 2016, this protein does not show appreciable sequence similarity to any other proteins in the NCBI protein database.

The Putative Listeria Phage Holin (LP-Hol) Family consists of several small proteins of 41 amino acyl residues (aas) and 1 transmembrane segment (TMS). They can be found in several Listeria phage as well as in Listeria monocytogenes. While annotated as holins, these proteins remain functionally uncharacterized. A representative list of proteins belonging to the LP-Hol family can be found in the Transporter Classification Database.

References

  1. Reddy, Bhaskara L.; Saier Jr., Milton H. (2013-11-01). "Topological and phylogenetic analyses of bacterial holin families and superfamilies". Biochimica et Biophysica Acta (BBA) - Biomembranes. 1828 (11): 2654–2671. doi:10.1016/j.bbamem.2013.07.004. PMC   3788059 . PMID   23856191.
  2. 1 2 Vukov, Natasa; Moll, Isabella; Bläsi, Udo; Scherer, Siegfried; Loessner, Martin J. (2003-04-01). "Functional regulation of the Listeria monocytogenes bacteriophage A118 holin by an intragenic inhibitor lacking the first transmembrane domain". Molecular Microbiology. 48 (1): 173–186. doi: 10.1046/j.1365-2958.2003.03421.x . ISSN   0950-382X. PMID   12657053. S2CID   8779394.

As of this edit, this article uses content from "1.E.21 The Listeria Phage A118 Holin (Hol118) Family" , which is licensed in a way that permits reuse under the Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL. All relevant terms must be followed.