In general relativity, the hole argument is an apparent paradox that much troubled Albert Einstein while developing his famous field equations.
In a usual field equation, knowing the source of the field, and the boundary conditions, determines the field everywhere. For example, if we are given the current and charge density and appropriate boundary conditions, Maxwell's equations determine the electric and magnetic fields. They do not determine the vector potential though, because the vector potential depends on an arbitrary choice of gauge.
Einstein noticed that if the equations of gravity are generally covariant, then the metric cannot be determined uniquely by its sources as a function of the coordinates of spacetime. As an example: consider a gravitational source, such as the Sun. Then there is some gravitational field described by a metric g(r). Now perform a coordinate transformation r r' where r' is the same as r for points which are inside the Sun but r' is different from r outside the Sun. The coordinate description of the interior of the Sun is unaffected by the transformation, but the functional form of the metric g' for the new coordinate values outside the Sun is changed. Due to the general covariance of the field equations, this transformed metric g' is also a solution in the untransformed coordinate system.
This means that one source, the Sun, can be the source of many seemingly different metrics. The resolution is immediate: any two fields which only differ by such a "hole" transformation are physically equivalent, just as two different vector potentials which differ by a gauge transformation are physically equivalent. Then all these mathematically distinct solutions are not physically distinguishable — they represent one and the same physical solution of the field equations.
There are many variations on this apparent paradox. In one version, consider an initial value surface with some data and find the metric as a function of time. Then perform a coordinate transformation which moves points around in the future of the initial value surface, but which doesn't affect the initial surface or any points at infinity. The conclusion may be that the generally covariant field equations do not determine the future uniquely, since this new coordinate transformed metric is an equally valid solution of the same field equations in the original coordinate system. So the initial value problem has no unique solution in general relativity. This is also true in electrodynamics—since you can do a gauge transformation which will only affect the vector potential tomorrow. The resolution in both cases is to use extra conditions to fix a gauge.
Einstein's derivation of the gravitational field equations was delayed because of the hole argument which he created in 1913. [1] However the problem was not as given in the section above. By 1912, the time Einstein started what he called his "struggle with the meaning of the coordinates", [2] he already knew to search for tensorial equations as these are unaffected by coordinate change. He had already found the form of the gravitational field (namely as a tetrad or frame field or metric ), and the equations of motion of matter in a given gravitational field (which follow from maximizing the proper time given by ). [3] It is evident that this is invariant under coordinate transformations.
What disturbed him was a consequence of his principle of general covariance and arises from the following. [4] General covariance states that the laws of physics should take the same mathematical form in all reference frames (accelerating or not) and hence all coordinate systems and so the differential equation that are the field equations of the gravitational field should take the same mathematical form in all coordinates systems. In other words, given two coordinate systems, say coordinates and coordinates, one has exactly the same differential equation to solve in both, except in one the independent variable is and in the other the independent variable is . This implies that as soon as one finds a metric function in the coordinate system that solves the field equations, one can simply write down the very same function but replace all the 's with 's, which solves the field equations in the coordinate system. As these two solutions have the same functional form but belong to different coordinate systems they impose different spacetime geometries. Note that this second solution is not related to the first through a coordinate transformation, but it is a solution nevertheless. Here is the problem that disturbed Einstein so much: if these coordinates systems differ only after there are then two solutions; they have the same initial conditions but they impose different geometries after . On the basis of this observation Einstein spent three years searching for non-generally covariant field equations in a frantic race against Hilbert. [5]
To be more accurate, Einstein conceived of a situation where the matter distribution is known everywhere outside some closed region of spacetime devoid of matter, the hole. Then the field equations together with the boundary conditions supposedly enable the metric field to be determined inside the hole. One takes the and coordinates to differ inside the hole but agree outside of it. The argument then proceeds as in the above paragraph.
As these two solutions have the same functional form, they assume the same values; they just assume them at different places. Therefore, one solution is obtained from the other by actively dragging the metric function over the spacetime manifold into the new configuration. This is known as a diffeomorphism, sometimes called an active diffeomorphism by physicists to distinguish it from coordinate transformations (passive diffeomorphisms). Einstein failed to find non-generally covariant field equations only to return to the hole argument and resolve it. It basically involved accepting that these two solutions are physically equivalent by claiming that how the metric is localized over the spacetime manifold is physically irrelevant and that individual spacetime points defined in terms of spacetime coordinates have no physical meaning in and of themselves (this is the source of the problem for manifold substantialism). To provide meaning to 'location', Einstein generalized the situation given in the above paragraphs by introducing two particles; then physical points (inside the hole) can be defined in terms of their coinciding world lines. This works because matter gets dragged across together with the metric under active diffeomorphisms. Without the introduction of these particles one would not be able to define physical spacetime points (within the hole); see the quotes of Einstein given below in the section 'Einstein's resolution'.
For the philosophically inclined, there is still some subtlety. If the metric components are considered the dynamical variables of General Relativity, the condition that the equations are coordinate invariant doesn't have any content by itself. All physical theories are invariant under coordinate transformations if formulated properly. It is possible to write down Maxwell's equations in any coordinate system, and predict the future in the same way.
But in order to formulate electromagnetism in an arbitrary coordinate system, one must introduce a description of the space-time geometry which is not tied down to a special coordinate system. This description is a metric tensor at every point, or a connection which defines which nearby vectors are parallel. The mathematical object introduced, the Minkowski metric, changes form from one coordinate system to another, but it isn't part of the dynamics, it doesn't obey equations of motion. No matter what happens to the electromagnetic field, it is always the same. It acts without being acted upon.
In General Relativity, every separate local quantity which is used to describe the geometry is itself a local dynamical field, with its own equation of motion. This produces severe restrictions, because the equation of motion has to be a sensible one. It must determine the future from initial conditions, it must not have runaway instabilities for small perturbations, it must define a positive definite energy for small deviations. If one takes the point of view that coordinate invariance is trivially true, the principle of coordinate invariance simply states that the metric itself is dynamical and its equation of motion does not involve a fixed background geometry.
In 1915, Einstein realized that the hole argument makes an assumption about the nature of spacetime: it presumes that there is meaning to talking about the value of the gravitational field (up to mere coordinate transformations) at a spacetime point defined by a spacetime coordinate — more precisely, it presumes that there is meaning to talking about physical properties of the gravitational field, for example if it is either flat or curved (this is a coordinate independent property of the gravitational field), at a spacetime point. By dropping this assumption, general covariance became compatible with determinism. While two gravitational fields that differ by an active diffeomorphism look different geometrically, after the trajectories of all the particles are recalculated, their interactions manifestly define 'physical' locations with respect to which the gravitational field takes the same value under all active diffeomorphisms. [6] (Note that if the two metrics were related to each other by a mere coordinate transformation the world lines of the particles would not get transposed; this is because both these metrics impose the same spacetime geometry and because world lines are defined geometrically as trajectories of maximum proper time — it is only with an active diffeomorphism that the geometry is changed and trajectories altered.) This was the first clear statement of the principle of gauge invariance in physical law.
Einstein believed that the hole argument implies that the only meaningful definition of location and time is through matter. A point in spacetime is meaningless in itself, because the label which one gives to such a point is undetermined. Spacetime points only acquire their physical significance because matter is moving through them. In his words:
He considered this the deepest insight of general relativity. According to this insight, the physical content of any theory is exhausted by the catalog of the spacetime coincidences it licenses. John Stachel called this principle, the point-coincidence argument. [1]
Generally what is invariant under active diffeomorphisms, and hence gauge invariant, are the coincidences between the value the gravitational field and the value the matter field have at the same 'place' because the gravitational field and the matter field get dragged across together with each other under an active diffeomorphism. From these coincidences one can form a notion of matter being located with respect to the gravitational field. As Carlo Rovelli puts it: "No more fields on spacetime: just fields on fields." [4] This is the true meaning[ clarification needed ] of the saying "The stage disappears and becomes one of the actors"; space-time as a 'container' over which physics takes place has no objective physical meaning and instead the gravitational interaction is represented as just one of the fields forming the world.
Einstein referred to his resolution as "beyond my wildest expectations."
Loop quantum gravity (LQG) is an approach to quantum gravity which attempts to marry the fundamental principles of classical GR with the minimal essential features of quantum mechanics and without demanding any new hypotheses. Loop quantum gravity physicists regard background independence as a central tenet in their approach to quantizing gravity – a classical symmetry that ought to be preserved by the quantum theory if we are to be truly quantizing geometry (=gravity). One immediate consequence is that LQG is UV-finite because small and large distances are gauge equivalent as one can replace one metric function for another related to the first by an active diffeomorphism. A more precise argument can be given. [8] The direct proof of finiteness of canonical LQG in the presence of all forms of matter has been provided by Thiemann. [9] However, it has been suggested[ who? ] that loop quantum gravity violates background independence by introducing a preferred frame of reference ('spin foams').[ citation needed ]
Perturbative string theory (in addition to a number of non-perturbative formulations) is not 'obviously' background independent, because it depends on boundary conditions at infinity, similarly to how perturbative general relativity is not 'obviously' background dependent. However some sectors of string theory admit formulations in which background independence is manifest, including most notably the AdS/CFT. It is believed that string theory is background independent in general, even if many useful formulations do not make it manifest. [10] For a contrary view see Smolin. [11]
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.
A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.
Loop quantum gravity (LQG) is a theory of quantum gravity that incorporates matter of the Standard Model into the framework established for the intrinsic quantum gravity case. It is an attempt to develop a quantum theory of gravity based directly on Albert Einstein's geometric formulation rather than the treatment of gravity as a mysterious mechanism (force). As a theory, LQG postulates that the structure of space and time is composed of finite loops woven into an extremely fine fabric or network. These networks of loops are called spin networks. The evolution of a spin network, or spin foam, has a scale on the order of a Planck length, approximately 10−35 meters, and smaller scales are meaningless. Consequently, not just matter, but space itself, prefers an atomic structure.
In Einstein's theory of general relativity, the Schwarzschild metric is an exact solution to the Einstein field equations that describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. It was found by Karl Schwarzschild in 1916.
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation, one of several alternatives to general relativity. The theory was first proposed by Élie Cartan in 1922.
In theoretical physics, general covariance, also known as diffeomorphism covariance or general invariance, consists of the invariance of the form of physical laws under arbitrary differentiable coordinate transformations. The essential idea is that coordinates do not exist a priori in nature, but are only artifices used in describing nature, and hence should play no role in the formulation of fundamental physical laws. While this concept is exhibited by general relativity, which describes the dynamics of spacetime, one should not expect it to hold in less fundamental theories. For matter fields taken to exist independently of the background, it is almost never the case that their equations of motion will take the same form in curved space that they do in flat space.
In theoretical physics, geometrodynamics is an attempt to describe spacetime and associated phenomena completely in terms of geometry. Technically, its goal is to unify the fundamental forces and reformulate general relativity as a configuration space of three-metrics, modulo three-dimensional diffeomorphisms. The origin of this idea can be found in an English mathematician William Kingdon Clifford's works. This theory was enthusiastically promoted by John Wheeler in the 1960s, and work on it continues in the 21st century.
The history of loop quantum gravity spans more than three decades of intense research.
Teleparallelism, was an attempt by Albert Einstein to base a unified theory of electromagnetism and gravity on the mathematical structure of distant parallelism, also referred to as absolute or teleparallelism. In this theory, a spacetime is characterized by a curvature-free linear connection in conjunction with a metric tensor field, both defined in terms of a dynamical tetrad field.
The Wheeler–DeWitt equation for theoretical physics and applied mathematics, is a field equation attributed to John Archibald Wheeler and Bryce DeWitt. The equation attempts to mathematically combine the ideas of quantum mechanics and general relativity, a step towards a theory of quantum gravity.
In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.
Albert Einstein derived the theory of special relativity in 1905, from principle now called the postulates of special relativity. Einstein's formulation is said to only require two postulates, though his derivation implies a few more assumptions.
Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.
Spacetime symmetries are features of spacetime that can be described as exhibiting some form of symmetry. The role of symmetry in physics is important in simplifying solutions to many problems. Spacetime symmetries are used in the study of exact solutions of Einstein's field equations of general relativity. Spacetime symmetries are distinguished from internal symmetries.
In the theory of general relativity, linearized gravity is the application of perturbation theory to the metric tensor that describes the geometry of spacetime. As a consequence, linearized gravity is an effective method for modeling the effects of gravity when the gravitational field is weak. The usage of linearized gravity is integral to the study of gravitational waves and weak-field gravitational lensing.
In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity. It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity.
The mathematics of general relativity is complicated. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics are required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.
Gauge theory gravity (GTG) is a theory of gravitation cast in the mathematical language of geometric algebra. To those familiar with general relativity, it is highly reminiscent of the tetrad formalism although there are significant conceptual differences. Most notably, the background in GTG is flat, Minkowski spacetime. The equivalence principle is not assumed, but instead follows from the fact that the gauge covariant derivative is minimally coupled. As in general relativity, equations structurally identical to the Einstein field equations are derivable from a variational principle. A spin tensor can also be supported in a manner similar to Einstein–Cartan–Sciama–Kibble theory. GTG was first proposed by Lasenby, Doran, and Gull in 1998 as a fulfillment of partial results presented in 1993. The theory has not been widely adopted by the rest of the physics community, who have mostly opted for differential geometry approaches like that of the related gauge gravitation theory.
In general relativity, the Hamilton–Jacobi–Einstein equation (HJEE) or Einstein–Hamilton–Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in superspace, cast in the "geometrodynamics era" around the 1960s, by Asher Peres in 1962 and others. It is an attempt to reformulate general relativity in such a way that it resembles quantum theory within a semiclassical approximation, much like the correspondence between quantum mechanics and classical mechanics.