Hydrogen-terminated silicon surface

Last updated

Hydrogen-terminated silicon surface is a chemically passivated silicon substrate where the surface Si atoms are bonded to hydrogen. [1] The hydrogen-terminated surfaces are hydrophobic, luminescent, and amenable to chemical modification. [2] Hydrogen-terminated silicon is an intermediate in the growth of bulk silicon from silane: [3] This termination is significant in the semiconductor industry due to its role in preventing oxidation and contamination of silicon surfaces, which is crucial for various applications including microelectronics and nanotechnology. [4]

Contents

SiH4 → Si + 2 H2

Preparation

Idealized view of Si surface before (top) and after (bottom) treatment with HF. Partially oxidized Si is shown in red, bulk Si in blue. H-terminatedSi ideal.svg
Idealized view of Si surface before (top) and after (bottom) treatment with HF. Partially oxidized Si is shown in red, bulk Si in blue.

Silicon wafers are treated with solutions of electronic-grade hydrofluoric acid in water, buffered water, or alcohol. One of the relevant reactions is simply removal of silicon oxides:

SiO2 + 4 HF → SiF4 + 2 H2O

The key reaction however is the formation of the hydrosilane functional group.

atomic force microscope (AFM) has been used to manipulate hydrogen-terminated silicon surfaces. [5] [6]

Properties

Idealized structure of alkene addition to hydrogen-terminated silicon. Self-assembled monolayer.svg
Idealized structure of alkene addition to hydrogen-terminated silicon.

Hydrogen termination removes dangling bonds. All surface Si atoms are tetrahedral. Hydrogen termination confers stability in ambient environments. So again, the surface is both clean (of oxides) and relatively inert. These materials can be handled in air without special care for several minutes. [7]

The Si-H bond in fact is stronger than the Si-Si bonds. Two kinds of Si-H centers are proposed, both featuring terminal Si-H bonds. One kind of site has one Si-H bond. The other kind of site features SiH2 centers. [3]

Like organic hydrosilanes, the H-Si groups on the surface react with terminal alkenes and diazo groups. The reaction is called hydrosilylation. Many kinds of organic compounds with various functions can be introduced onto the silicon surface by the hydrosilylation of a hydrogen-terminated surface. The infrared spectrum of hydrogen-terminated silicon shows a band near 2090 cm−1, not very different from νSi-H for organic hydrosilanes. [7]

Potential applications

One group proposed to use the material to create digital circuits made of quantum dots by removing hydrogen atoms from the silicon surface. [5] The hydrogen-terminated silicon surface is widely used in the fabrication of semiconductor devices. It serves as a precursor for various surface functionalization techniques and is also essential in the formation of silicon-on-insulator (SOI) wafers. [8]

Stability & Reactivity

Despite its stability, hydrogen-terminated silicon can gradually oxidize when exposed to air, forming a thin oxide layer. This process can be monitored using techniques such as X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). [9]

See also

Related Research Articles

<span class="mw-page-title-main">Chemical vapor deposition</span> Method used to apply surface coatings

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.

<span class="mw-page-title-main">Covalent bond</span> Chemical bond by sharing of electron pairs

A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding. For many molecules, the sharing of electrons allows each atom to attain the equivalent of a full valence shell, corresponding to a stable electronic configuration. In organic chemistry, covalent bonding is much more common than ionic bonding.

<span class="mw-page-title-main">Crystallographic defect</span> Disruption of the periodicity of a crystal lattice

A crystallographic defect is an interruption of the regular patterns of arrangement of atoms or molecules in crystalline solids. The positions and orientations of particles, which are repeating at fixed distances determined by the unit cell parameters in crystals, exhibit a periodic crystal structure, but this is usually imperfect. Several types of defects are often characterized: point defects, line defects, planar defects, bulk defects. Topological homotopy establishes a mathematical method of characterization.

Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. Electronegativity serves as a simple way to quantitatively estimate the bond energy, and the sign and magnitude of a bond's chemical polarity, which characterizes a bond along the continuous scale from covalent to ionic bonding. The loosely defined term electropositivity is the opposite of electronegativity: it characterizes an element's tendency to donate valence electrons.

<span class="mw-page-title-main">Silane</span> Chemical compound (SiH4)

Silane (Silicane) is an inorganic compound with chemical formula SiH4. It is a colorless, pyrophoric, toxic gas with a sharp, repulsive, pungent smell, somewhat similar to that of acetic acid. Silane is of practical interest as a precursor to elemental silicon. Silane with alkyl groups are effective water repellents for mineral surfaces such as concrete and masonry. Silanes with both organic and inorganic attachments are used as coupling agents. They are commonly used to apply coatings to surfaces or as an adhesion promoter.

Mechanochemistry is the initiation of chemical reactions by mechanical phenomena. Mechanochemistry thus represents a fourth way to cause chemical reactions, complementing thermal reactions in fluids, photochemistry, and electrochemistry. Conventionally mechanochemistry focuses on the transformations of covalent bonds by mechanical force. Not covered by the topic are many phenomena: phase transitions, dynamics of biomolecules, and sonochemistry.

<span class="mw-page-title-main">Dangling bond</span> State of an immobilized atom in chemistry

In chemistry, a dangling bond is an unsatisfied valence on an immobilized atom. An atom with a dangling bond is also referred to as an immobilized free radical or an immobilized radical, a reference to its structural and chemical similarity to a free radical.

In chemistry, the valence or valency of an atom is a measure of its combining capacity with other atoms when it forms chemical compounds or molecules. Valence is generally understood to be the number of chemical bonds that each atom of a given chemical element typically forms. Double bonds are considered to be two bonds, triple bonds to be three, quadruple bonds to be four, quintuple bonds to be five and sextuple bonds to be six. In most compounds, the valence of hydrogen is 1, of oxygen is 2, of nitrogen is 3, and of carbon is 4. Valence is not to be confused with the related concepts of the coordination number, the oxidation state, or the number of valence electrons for a given atom.

<span class="mw-page-title-main">Organosilicon chemistry</span> Organometallic compound containing carbon–silicon bonds

Organosilicon chemistry is the study of organometallic compounds containing carbon–silicon bonds, to which they are called organosilicon compounds. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound.

<span class="mw-page-title-main">Binary silicon-hydrogen compounds</span>

Silanes are saturated chemical compounds with the empirical formula SixHy. They are hydrosilanes, a class of compounds that includes compounds with Si−H and other Si−X bonds. All contain tetrahedral silicon and terminal hydrides. They only have Si−H and Si−Si single bonds. The bond lengths are 146.0 pm for a Si−H bond and 233 pm for a Si−Si bond. The structures of the silanes are analogues of the alkanes, starting with silane, SiH4, the analogue of methane, continuing with disilane Si2H6, the analogue of ethane, etc. They are mainly of theoretical or academic interest.

Hydrosilylation, also called catalytic hydrosilation, describes the addition of Si-H bonds across unsaturated bonds. Ordinarily the reaction is conducted catalytically and usually the substrates are unsaturated organic compounds. Alkenes and alkynes give alkyl and vinyl silanes; aldehydes and ketones give silyl ethers. Hydrosilylation has been called the "most important application of platinum in homogeneous catalysis."

Hydrosilanes are tetravalent silicon compounds containing one or more Si-H bond. The parent hydrosilane is silane (SiH4). Commonly, hydrosilane refers to organosilicon derivatives. Examples include phenylsilane (PhSiH3) and triethoxysilane ((C2H5O)3SiH). Polymers and oligomers terminated with hydrosilanes are resins that are used to make useful materials like caulks.

<span class="mw-page-title-main">Silicon monoxide</span> Chemical compound

Silicon monoxide is the chemical compound with the formula SiO where silicon is present in the oxidation state +2. In the vapour phase, it is a diatomic molecule. It has been detected in stellar objects and has been described as the most common oxide of silicon in the universe.

<span class="mw-page-title-main">Local oxidation nanolithography</span>

Local oxidation nanolithography (LON) is a tip-based nanofabrication method. It is based on the spatial confinement on an oxidation reaction under the sharp tip of an atomic force microscope.

<span class="mw-page-title-main">Disiloxane</span> Chemical compound

Disiloxane has the chemical formula Si
2
H
6
O
. It is the simplest known siloxane with hydrogen only R groups. The molecule contains six equivalent Si−H bonds and two equivalent Si−O bonds. Disiloxane exists as a colorless, pungent gas under standard conditions. However, it is generally safe for human use as evidence in its widespread use in cosmetics. It is also commonly known as disilyl ether, disilyl oxide, and perhydrodisiloxane

Reductions with hydrosilanes are methods used for hydrogenation and hydrogenolysis of organic compounds. The approach is a subset of ionic hydrogenation. In this particular method, the substrate is treated with a hydrosilane and auxiliary reagent, often a strong acid, resulting in formal transfer of hydride from silicon to carbon. This style of reduction with hydrosilanes enjoys diverse if specialized applications.

Direct bonding, or fusion bonding, is a wafer bonding process without any additional intermediate layers. It is based on chemical bonds between two surfaces of any material possible meeting numerous requirements. These requirements are specified for the wafer surface as sufficiently clean, flat and smooth. Otherwise unbonded areas so called voids, i.e. interface bubbles, can occur.

<span class="mw-page-title-main">Non-contact atomic force microscopy</span>

Non-contact atomic force microscopy (nc-AFM), also known as dynamic force microscopy (DFM), is a mode of atomic force microscopy, which itself is a type of scanning probe microscopy. In nc-AFM a sharp probe is moved close to the surface under study, the probe is then raster scanned across the surface, the image is then constructed from the force interactions during the scan. The probe is connected to a resonator, usually a silicon cantilever or a quartz crystal resonator. During measurements the sensor is driven so that it oscillates. The force interactions are measured either by measuring the change in amplitude of the oscillation at a constant frequency just off resonance or by measuring the change in resonant frequency directly using a feedback circuit to always drive the sensor on resonance.

<span class="mw-page-title-main">Functionality (chemistry)</span> Presence of functional groups within a molecule

In chemistry, functionality is the presence of functional groups in a molecule. A monofunctional molecule possesses one functional group, a bifunctional two, a trifunctional three, and so forth. In organic chemistry, a molecule's functionality has a decisive influence on its reactivity.

In chemistry, transition metal silyl complexes describe coordination complexes in which a transition metal is bonded to an anionic silyl ligand, forming a metal-silicon sigma bond. This class of complexes are numerous and some are technologically significant as intermediates in hydrosilylation. These complexes are a subset of organosilicon compounds.

References

  1. Fenner, D. B.; Biegelsen, D. K.; Bringans, R. D. (1989). "Silicon surface passivation by hydrogen termination: A comparative study of preparation methods". Journal of Applied Physics. 66 (1): 419–424. Bibcode:1989JAP....66..419F. doi: 10.1063/1.343839 .
  2. Lauerhaas, Jeffrey M.; Sailor, Michael J. (1993). "Chemical Modification of the Photoluminescence Quenching of Porous Silicon". Science. 261 (5128): 1567–1568. Bibcode:1993Sci...261.1567L. doi:10.1126/science.261.5128.1567. PMID   17798116. S2CID   12722221.
  3. 1 2 Waltenburg, Hanne Neergaard; Yates, John (1995). "Surface Chemistry of Silicon". Chem. Rev. 95 (5): 1589–1673. doi:10.1021/cr00037a600.
  4. Neergaard Waltenburg, Hanne; Yates, John (July 1995). "Surface Chemistry of Silicon". Chemical Reviews. 95 (5): 1589–1673. doi:10.1021/cr00037a600. ISSN   0009-2665.
  5. 1 2 "Manipulating silicon atoms to create future ultra-fast, ultra-low-power chip technology". www.kurzweilai.net. 2017-02-17. Retrieved 2017-02-22.
  6. Labidi, Hatem; Koleini, Mohammad; Huff, Taleana; Salomons, Mark; Cloutier, Martin; Pitters, Jason; Wolkow, Robert A. (2017-02-13). "Indications of chemical bond contrast in AFM images of a hydrogen-terminated silicon surface". Nature Communications. 8: 14222. Bibcode:2017NatCo...814222L. doi:10.1038/ncomms14222. ISSN   2041-1723. PMC   5316802 . PMID   28194036.
  7. 1 2 "Organic modification of hydrogen terminated silicon surfaces1". Journal of the Chemical Society, Perkin Transactions 2: 23–34. 2002. doi:10.1039/B100704L.
  8. Blake, Robert B.; Pei, Lei; Yang, Li; Lee, Michael V.; Conley, Hiram J.; Davis, Robert C.; Shirahata, Naoto; Linford, Matthew R. (2008-04-18). "One-Step Growth of ca. 2–15 nm Polymer Thin Films on Hydrogen-Terminated Silicon". Macromolecular Rapid Communications. 29 (8): 638–644. doi:10.1002/marc.200700752. ISSN   1022-1336.
  9. Shinohara, Masanori; Katagiri, Teruaki; Iwatsuji, Keitaro; Matsuda, Yoshinobu; Fujiyama, Hiroshi; Kimura, Yasuo; Niwano, Michio (March 2005). "Oxidation of the hydrogen terminated silicon surfaces by oxygen plasma investigated by in-situ infrared spectroscopy". Thin Solid Films. 475 (1–2): 128–132. Bibcode:2005TSF...475..128S. doi:10.1016/j.tsf.2004.08.054. ISSN   0040-6090.