Hydroxyethyl methyl cellulose

Last updated
Hydroxyethyl methyl cellulose
Hydroxyethyl methyl cellulose.gif
Names
Other names
2-hydroxyethyl methyl cellulose, Cellulose, 2-hydroxyethyl methyl ether, Methyl hydroxyethyl cellulose
Identifiers
ChemSpider
  • none
ECHA InfoCard 100.109.039 OOjs UI icon edit-ltr-progressive.svg
UNII
Properties
variable
Molar mass variable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Hydroxyethyl methyl cellulose is a gelling and thickening agent derived from cellulose.

See also

Related Research Articles

<span class="mw-page-title-main">Cellulose</span> Polymer of glucose and structural component of cell wall of plants and green algae

Cellulose is an organic compound with the formula (C
6
H
10
O
5
)
n
, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most abundant organic polymer on Earth. The cellulose content of cotton fiber is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.

<span class="mw-page-title-main">Rayon</span> Cellulose-based semi-synthetic fiber

Rayon is a semi-synthetic fiber, made from natural sources of regenerated cellulose, such as wood and related agricultural products. It has the same molecular structure as cellulose. It is also called viscose. Many types and grades of viscose fibers and films exist. Some imitate the feel and texture of natural fibers such as silk, wool, cotton, and linen. The types that resemble silk are often called artificial silk.

<span class="mw-page-title-main">K-Y Jelly</span> Personal lubricant

K-Y Jelly is a water-based, water-soluble personal lubricant, most commonly used as a lubricant for sexual intercourse and masturbation. A variety of different products and formulas are produced under the K-Y banner, some of which are not water-soluble.

HEC or hec may refer to:

<span class="mw-page-title-main">Ice pack</span> Filled bag designed to be frozen

An ice pack or gel pack is a portable bag filled with water, refrigerant gel, or liquid, meant to provide cooling. They can be divided into the reusable type, which works as a thermal mass and requires freezing, or the instant type, which cools itself down using chemicals but can only be used once. The instant type is generally limited to medical use as a cold compress to alleviate the pain of minor injuries, while the reusable type is both used as a cold compress and to keep food cool in portable coolers or in insulated shipping containers to keep products cool during transport.

2-Chloroethanol (also called ethylene chlorohydrin or glycol chlorohydrin) is an organic chemical compound with the chemical formula HOCH2CH2Cl and the simplest beta-halohydrin (chlorohydrin). This colorless liquid has a pleasant ether-like odor. It is miscible with water. The molecule is bifunctional, consisting of both an alkyl chloride and an alcohol functional group.

<span class="mw-page-title-main">Methyl cellulose</span> Chemical compound

Methyl cellulose is a compound derived from cellulose. It is sold under a variety of trade names and is used as a thickener and emulsifier in various food and cosmetic products, and also as a bulk-forming laxative. Like cellulose, it is not digestible, not toxic, and not an allergen.

Oxidative decarboxylation is a decarboxylation reaction caused by oxidation. Most are accompanied by α- Ketoglutarate α- Decarboxylation caused by dehydrogenation of hydroxyl carboxylic acids such as carbonyl carboxylic acid, malic acid, isocitric acid, etc.

<span class="mw-page-title-main">Hydroxyethyl starch</span> Pharmaceutical drug

Hydroxyethyl starch (HES/HAES), sold under the brand name Voluven among others, is a nonionic starch derivative, used as a volume expander in intravenous therapy. The use of HES on critically ill patients is associated with an increased risk of death and kidney problems.

<span class="mw-page-title-main">Iclazepam</span> Chemical compound

Iclazepam (Clazepam) is a drug which is a benzodiazepine derivative. It has sedative and anxiolytic effects similar to those produced by other benzodiazepine derivatives, and is around the same potency as chlordiazepoxide.

Viaspan was the trademark under which the University of Wisconsin cold storage solution was sold. Currently, UW solution is sold under the Belzer UW trademark and others like Bel-Gen or StoreProtect. UW solution was the first solution designed for use in organ transplantation, and became the first intracellular-like preservation medium. Developed in the late 1980s by Folkert Belzer and James Southard for pancreas preservation, the solution soon displaced EuroCollins solution as the preferred medium for cold storage of livers and kidneys, as well as pancreas. The solution has also been used for hearts and other organs. University of Wisconsin cold storage solution remains what is often called the gold standard for organ preservation, despite the development of other solutions that are in some respects superior.

EHEC may mean:

<span class="mw-page-title-main">Hydroxyethyl cellulose</span> Chemical compound

Hydroxyethyl cellulose is a gelling and thickening agent derived from cellulose. It is widely used in cosmetics, cleaning solutions, and other household products. Hydroxyethyl cellulose and methyl cellulose are frequently used with hydrophobic drugs in capsule formulations, to improve the drugs' dissolution in the gastrointestinal fluids. This process is known as hydrophilization.

Hydroxyethyl starch-induced pruritus is an intense itching, lasting for as long as one year, occurring following hydroxyethyl starch intravenous infusion for vascular insufficiency.There is no treatment for the itch.

Dissolving pulp, also called dissolving cellulose, is bleached wood pulp or cotton linters that has a high cellulose content. It has special properties including a high level of brightness and uniform molecular-weight distribution. This pulp is manufactured for uses that require a high chemical purity, and particularly low hemicellulose content, since the chemically similar hemicellulose can interfere with subsequent processes. Dissolving pulp is so named because it is not made into paper, but dissolved either in a solvent or by derivatization into a homogeneous solution, which makes it completely chemically accessible and removes any remaining fibrous structure. Once dissolved, it can be spun into textile fibers, or chemically reacted to produce derivatized celluloses, such cellulose triacetate, a plastic-like material formed into fibers or films, or cellulose ethers such as methyl cellulose, used as a thickener.

Hydroxyethylrutosides are hydroxyethyl derivatives of rutosides. Examples include:

Hydrophilization is a process used for hydrophobic drugs to increase their release rate from capsules, which is dependent on the rate of dissolution, by covering the surface of the drug particles with minute droplets of a hydrophilic polymer solution.

<span class="mw-page-title-main">Paper chemicals</span> Chemicals used in paper manufacturing

Paper chemicals designate a group of chemicals that are used for paper manufacturing, or modify the properties of paper. These chemicals can be used to alter the paper in many ways, including changing its color and brightness, or by increasing its strength and resistance to water. The chemicals can be defined on basis of their usage in the process.

<span class="mw-page-title-main">Bacterial cellulose</span> Organic compound

Bacterial cellulose is an organic compound with the formula (C
6
H
10
O
5
)
n
produced by certain types of bacteria. While cellulose is a basic structural material of most plants, it is also produced by bacteria, principally of the genera Acetobacter, Sarcina ventriculi and Agrobacterium. Bacterial, or microbial, cellulose has different properties from plant cellulose and is characterized by high purity, strength, moldability and increased water holding ability. In natural habitats, the majority of bacteria synthesize extracellular polysaccharides, such as cellulose, which form protective envelopes around the cells. While bacterial cellulose is produced in nature, many methods are currently being investigated to enhance cellulose growth from cultures in laboratories as a large-scale process. By controlling synthesis methods, the resulting microbial cellulose can be tailored to have specific desirable properties. For example, attention has been given to the bacteria Komagataeibacter xylinum due to its cellulose's unique mechanical properties and applications to biotechnology, microbiology, and materials science. Historically, bacterial cellulose has been limited to the manufacture of Nata de coco, a South-East Asian food product. With advances in the ability to synthesize and characterize bacterial cellulose, the material is being used for a wide variety of commercial applications including textiles, cosmetics, and food products, as well as medical applications. Many patents have been issued in microbial cellulose applications and several active areas of research are attempting to better characterize microbial cellulose and utilize it in new areas.

The surface chemistry of paper is responsible for many important paper properties, such as gloss, waterproofing, and printability. Many components are used in the paper-making process that affect the surface.