IBM Electromatic Table Printing Machine

Last updated

The IBM Electromatic Table Printing Machine was a typesetting-quality printer, consisting of a modified IBM Electromatic Proportional Spacing Typewriter connected to a modified IBM 016 keypunch. A plugboard control panel was used for programming and formatting of the printout.

Contents

A deck of punched cards containing the table (calculated and punched by other unit record equipment) to be printed was put into the IBM 016, which read them and then controlled the typing of the typewriter through a box containing solenoids that depressed the keys. Printed output could then be photographically reproduced on a printing plate, which would be used in a printing press to make as many copies as needed. [1] [2]

Development

Columbia University Astronomy Professor Wallace Eckert was examining the process used by the Navy to produce Air Almanacs. Deciding that the manual computation techniques used were too slow and error prone, he recommended automating the process with existing punched card based unit record equipment. One of the hardest problems was getting a high-quality printout of the tables. Initially IBM 405 accounting machines with special modifications were used, but he wanted something better. In 1941 Eckert developed a specification for a card-driven composing typewriter and asked IBM to design and build it.[ citation needed ]

The first Electromatic Table Printing Machine was delivered to him in 1945. It produced it first Air Almanac in 1946.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Printer (computing)</span> Computer peripheral that prints text or graphics

In computing, a printer is a peripheral machine which makes a durable representation of graphics or text, usually on paper. While most output is human-readable, bar code printers are an example of an expanded use for printers. Different types of printers include 3D printers, inkjet printers, laser printers, and thermal printers.

<span class="mw-page-title-main">Word processor (electronic device)</span> Electronic device

A word processor is an electronic device for text, composing, editing, formatting, and printing.

<span class="mw-page-title-main">Dot matrix printing</span> Computer printing process

Dot matrix printing, sometimes called impact matrix printing, is a computer printing process in which ink is applied to a surface using a relatively low-resolution dot matrix for layout. Dot matrix printers are a type of impact printer that prints using a fixed number of pins or wires and typically use a print head that moves back and forth or in an up-and-down motion on the page and prints by impact, striking an ink-soaked cloth ribbon against the paper. They were also known as serial dot matrix printers. Unlike typewriters or line printers that use a similar print mechanism, a dot matrix printer can print arbitrary patterns and not just specific characters.

<span class="mw-page-title-main">Daisy wheel printing</span> Impact printing technology

Daisy wheel printing is an impact printing technology invented in 1970 by Andrew Gabor at Diablo Data Systems. It uses interchangeable pre-formed type elements, each with typically 96 glyphs, to generate high-quality output comparable to premium typewriters such as the IBM Selectric, but two to three times faster. Daisy wheel printing was used in electronic typewriters, word processors and computers from 1972. The daisy wheel is so named because of its resemblance to the daisy flower.

<span class="mw-page-title-main">IBM 1620</span> Small IBM scientific computer released in 1959

The IBM 1620 was announced by IBM on October 21, 1959, and marketed as an inexpensive scientific computer. After a total production of about two thousand machines, it was withdrawn on November 19, 1970. Modified versions of the 1620 were used as the CPU of the IBM 1710 and IBM 1720 Industrial Process Control Systems.

<span class="mw-page-title-main">Spooling</span> Form of multitasking in computers

In computing, spooling is a specialized form of multi-programming for the purpose of copying data between different devices. In contemporary systems, it is usually used for mediating between a computer application and a slow peripheral, such as a printer. Spooling allows programs to "hand off" work to be done by the peripheral and then proceed to other tasks, or to not begin until input has been transcribed. A dedicated program, the spooler, maintains an orderly sequence of jobs for the peripheral and feeds it data at its own rate. Conversely, for slow input peripherals, such as a card reader, a spooler can maintain a sequence of computational jobs waiting for data, starting each job when all of the relevant input is available; see batch processing. The spool itself refers to the sequence of jobs, or the storage area where they are held. In many cases, the spooler is able to drive devices at their full rated speed with minimal impact on other processing.

Wallace John Eckert was an American astronomer, who directed the Thomas J. Watson Astronomical Computing Bureau at Columbia University which evolved into the research division of IBM.

<span class="mw-page-title-main">Unit record equipment</span> Electromechanical machines which processed data using punch cards

Starting at the end of the nineteenth century, well before the advent of electronic computers, data processing was performed using electromechanical machines collectively referred to as unit record equipment, electric accounting machines (EAM) or tabulating machines. Unit record machines came to be as ubiquitous in industry and government in the first two-thirds of the twentieth century as computers became in the last third. They allowed large volume, sophisticated data-processing tasks to be accomplished before electronic computers were invented and while they were still in their infancy. This data processing was accomplished by processing punched cards through various unit record machines in a carefully choreographed progression. This progression, or flow, from machine to machine was often planned and documented with detailed flowcharts that used standardized symbols for documents and the various machine functions. All but the earliest machines had high-speed mechanical feeders to process cards at rates from around 100 to 2,000 per minute, sensing punched holes with mechanical, electrical, or, later, optical sensors. The operation of many machines was directed by the use of a removable plugboard, control panel, or connection box. Initially all machines were manual or electromechanical. The first use of an electronic component was in 1937 when a photocell was used in a Social Security bill-feed machine. Electronic components were used on other machines beginning in the late 1940s.

<span class="mw-page-title-main">IBM 1403</span> High speed line printer, introduced in 1959 and used into the 1970s

The IBM 1403 line printer was introduced as part of the IBM 1401 computer in 1959 and had an especially long life in the IBM product line.

<span class="mw-page-title-main">Friden Flexowriter</span> Teleprinter

The Friden Flexowriter was a teleprinter produced by the Friden Calculating Machine Company. It was a heavy-duty electric typewriter capable of being driven not only by a human typing, but also automatically by several methods, including direct attachment to a computer and by use of paper tape.

<span class="mw-page-title-main">Keypunch</span> Device for punching holes into paper cards

A keypunch is a device for precisely punching holes into stiff paper cards at specific locations as determined by keys struck by a human operator. Other devices included here for that same function include the gang punch, the pantograph punch, and the stamp. The term was also used for similar machines used by humans to transcribe data onto punched tape media.

<span class="mw-page-title-main">IBM 407</span> Tabulating machine introduced in 1949

The IBM 407 Accounting Machine, introduced in 1949, was one of a long line of IBM tabulating machines dating back to the days of Herman Hollerith. It had a card reader and printer; a summary punch could be attached. Processing was directed by a control panel.

<span class="mw-page-title-main">IBM System/3</span> IBM midrange computer (1969–1985)

The IBM System/3 was an IBM midrange computer introduced in 1969, and marketed until 1985. It was produced by IBM Rochester in Minnesota as a low-end business computer aimed at smaller organizations that still used IBM 1400 series computers or unit record equipment. The first member of what IBM refers to as their "midrange" line, it also introduced the RPG II programming language. It is the first ancestor in the product line whose current version is the IBM i series and includes the highly successful AS/400.

<span class="mw-page-title-main">Tabulating machine</span> Late 19th-century machine for summarizing information stored on punch cards

The tabulating machine was an electromechanical machine designed to assist in summarizing information stored on punched cards. Invented by Herman Hollerith, the machine was developed to help process data for the 1890 U.S. Census. Later models were widely used for business applications such as accounting and inventory control. It spawned a class of machines, known as unit record equipment, and the data processing industry.

<span class="mw-page-title-main">IBM SSEC</span> IBM Selective Sequence Electronic Calculator

The IBM Selective Sequence Electronic Calculator (SSEC) was an electromechanical computer built by IBM. Its design was started in late 1944 and it operated from January 1948 to August 1952. It had many of the features of a stored-program computer, and was the first operational machine able to treat its instructions as data, but it was not fully electronic. Although the SSEC proved useful for several high-profile applications, it soon became obsolete. As the last large electromechanical computer ever built, its greatest success was the publicity it provided for IBM.

<span class="mw-page-title-main">Plugboard</span> Control panel using electrical patch cords

A plugboard or control panel is an array of jacks or sockets into which patch cords can be inserted to complete an electrical circuit. Control panels are sometimes used to direct the operation of unit record equipment, cipher machines, and early computers. The array of holes is often contained in a flat removable panel that can be inserted into a machine and pressed against an array of contacts. This allows the machine to be quickly switched between different applications.

<span class="mw-page-title-main">IBM 7070</span> Decimal computer introduced by IBM in 1958

IBM 7070 is a decimal-architecture intermediate data-processing system that was introduced by IBM in 1958. It was part of the IBM 700/7000 series, and was based on discrete transistors rather than the vacuum tubes of the 1950s. It was the company's first transistorized stored-program computer.

<span class="mw-page-title-main">IBM Selectric</span> Line of electric typewriters by IBM

The IBM Selectric was a highly successful line of electric typewriters introduced by IBM on 31 July 1961.

IBM 3740 Data Entry System was a data entry system that was announced by IBM in 1973. It recorded data on an 8" diskette, a new recording medium from IBM, for fast, flexible, efficient data entry to either high-production, centralized operations or to decentralized, remote operations. The "Diskette" was more commonly known as an 8-inch floppy disk.

References

  1. "Emergency Response Official Credentials: An Approach to Attain Trust in Credentials across Multiple Jurisdictions for Disaster Response and Recovery". January 3, 2011. Archived from the original on January 27, 2013. Retrieved July 13, 2017.
  2. Martin, Christophe (30 June 2010). "Update from SIMalliance on SCWS". Archived from the original on 1 August 2013. Retrieved March 20, 2012.