IEEE P80

Last updated

IEEE standard P80 is a technical standard of the Institute of Electrical and Electronics Engineers (IEEE), governing outdoor AC substations (although under special circumstances it may also be applied to indoor AC substations). [1] It was last approved on the 28th September, 2017. The standard governs requirements for the grounding and insulation of substations for safety purposes. The standard, along with IEEE P81, is widely used within the industry in power applications.

Specifications

For AC currents at the frequency used for power grids (i.e. 50 or 60 Hz), the threshold of lethality for current passing through the human body is only 0.1 A, although this value can be much higher for short surges, or for higher frequencies. As a result, the standard recommends an emphasis on fast fault clearing time in order to reduce both the probability and duration of any potential exposure of humans to dangerous fault current.

In general, a system of horizontal grid conductors and vertical rods and electrodes is recommended. Ths is to reduce the aforementioned fault clearing time, as well as ensuring that there are multiple paths for a high fault current to dissipate, ensuring that ground potential gradients dangerous to those standing near the substation will not occur. An example implementation given consists of copper rods buried 0.3-0.5m below ground, and spaced 3-7m apart. In situations where space is at a premium, or other difficulties prevent the construction of a proper grounding grid, ground rods may be driven in deeper, and a wire mat may also be used. [2]

Related Research Articles

<span class="mw-page-title-main">Electric power transmission</span> Bulk movement of electrical energy

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

<span class="mw-page-title-main">Ground (electricity)</span> Reference point in an electrical circuit from which voltages are measured

In electrical engineering, ground or earth may be a reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the Earth.

<span class="mw-page-title-main">Electric power distribution</span> Final stage of electricity delivery to individual consumers in a power grid

Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 33 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

<span class="mw-page-title-main">Circuit breaker</span> Automatic circuit protection device

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by current in excess of that which the equipment can safely carry (overcurrent). Its basic function is to interrupt current flow to protect equipment and to prevent fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

<span class="mw-page-title-main">Power-line communication</span> Data network that uses electrical wiring

Power-line communication (PLC) is the carrying of data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers. The line that does so is known as a power-line carrier.

<span class="mw-page-title-main">Substation</span> Part of an electrical transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.

<span class="mw-page-title-main">Single-wire earth return</span> Supply energy using single wire with earth as return

Single-wire earth return (SWER) or single-wire ground return is a single-wire transmission line which supplies single-phase electric power from an electrical grid to remote areas at lowest cost. The earth is used as the return path for the current, to avoid the need for a second wire to act as a return path.

<span class="mw-page-title-main">Residual-current device</span> Electrical safety device used in household wiring

A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device that interrupts an electrical circuit when the current passing through a conductor is not equal and opposite in both directions, therefore indicating leakage current to ground or current flowing to another powered conductor. The device's purpose is to reduce the severity of injury caused by an electric shock. This type of circuit interrupter cannot protect a person who touches both circuit conductors at the same time, since it then cannot distinguish normal current from that passing through a person.

<span class="mw-page-title-main">Busbar</span> Strip inside switchgear for local high current distribution

In electric power distribution, a busbar is a metallic strip or bar, typically housed inside switchgear, panel boards, and busway enclosures for local high current power distribution. They are also used to connect high voltage equipment at electrical switchyards, and low-voltage equipment in battery banks. They are generally uninsulated, and have sufficient stiffness to be supported in air by insulated pillars. These features allow sufficient cooling of the conductors, and the ability to tap in at various points without creating a new joint.

<span class="mw-page-title-main">Ground and neutral</span> In mains electricity, part of a circuit connected to ground or earth

In electrical engineering, ground and neutral are circuit conductors used in alternating current (AC) electrical systems. The neutral conductor returns current to the supply. To limit the effects of leakage current from higher-voltage systems, the neutral conductor is often connected to earth ground at the point of supply. A ground conductor is not intended to carry current for normal operation of the circuit, but instead connects exposed metallic components to earth ground. A ground conductor only carries significant current if there is a circuit fault that would otherwise energize exposed conductive parts and present a shock hazard. Circuit protection devices may detect a fault to a grounded metal enclosure and automatically de-energize the circuit, or may provide a warning of a ground fault.

<span class="mw-page-title-main">High voltage</span> Electrical potential that is large enough to cause damage or injury

High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.

<span class="mw-page-title-main">Current transformer</span> Transformer used to scale alternating current, used as sensor for AC power

A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

<span class="mw-page-title-main">Shielded cable</span> Electric cable with metal jacket (shield) to prevent magnetic interference

A shielded cable or screened cable is an electrical cable that has a common conductive layer around its conductors for electromagnetic shielding. This shield is usually covered by an outermost layer of the cable. Common types of cable shielding can most broadly be categorized as foil type, contraspiralling wire strands or both. A longitudinal wire may be necessary with dielectric spiral foils to short out each turn.

<span class="mw-page-title-main">Switchgear</span> Control gear of an electric power system

In an electric power system, a switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

Power-system automation is the act of automatically controlling the power system via instrumentation and control devices. Substation automation refers to using data from Intelligent electronic devices (IED), control and automation capabilities within the substation, and control commands from remote users to control power-system devices.

An earthing system or grounding system (US) connects specific parts of an electric power system with the ground, typically the equipments conductive surface, for safety and functional purposes. The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary among countries, though most follow the recommendations of the International Electrotechnical Commission (IEC). Regulations may identify special cases for earthing in mines, in patient care areas, or in hazardous areas of industrial plants.

<span class="mw-page-title-main">Arc flash</span> Heat and light produced during an electrical arc fault

An arc flash is the light and heat produced as part of an arc fault, a type of electrical explosion or discharge that results from a connection through air to ground or another voltage phase in an electrical system.

<span class="mw-page-title-main">Earth potential rise</span> Rise of voltage of local earth when a large current flows through an earth grid impedance

In electrical engineering, earth potential rise (EPR), also called ground potential rise (GPR), occurs when a large current flows to earth through an earth grid impedance. The potential relative to a distant point on the Earth is highest at the point where current enters the ground, and declines with distance from the source. Ground potential rise is a concern in the design of electrical substations because the high potential may be a hazard to people or equipment.

<span class="mw-page-title-main">Electrical grid</span> Interconnected network for delivering electricity to consumers

An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids consist of power stations, electrical substations to step voltage up or down, electric power transmission to carry power over long distances, and finally electric power distribution to customers. In that last step, voltage is stepped down again to the required service voltage. Power stations are typically built close to energy sources and far from densely populated areas. Electrical grids vary in size and can cover whole countries or continents. From small to large there are microgrids, wide area synchronous grids, and super grids. The combined transmission and distribution network is part of electricity delivery, known as the power grid.

<span class="mw-page-title-main">Lightning rod</span> Metal rod intended to protect a structure from a lightning strike

A lightning rod or lightning conductor is a metal rod mounted on a structure and intended to protect the structure from a lightning strike. If lightning hits the structure, it is most likely to strike the rod and be conducted to ground through a wire, rather than passing through the structure, where it could start a fire or cause electrocution. Lightning rods are also called finials, air terminals, or strike termination devices.

References

  1. "P80 - Guide for Safety in AC Substation Grounding". IEEE Standards Association. Archived from the original on September 29, 2022. Retrieved 2023-06-12.
  2. "IEEE guide for safety in AC-substation grounding - IEEE Std 80-2000" (PDF). Retrieved 20 October 2023.