IMCTA-C14

Last updated

IMCTA-C14
IMCTA-C14.svg
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/C26H51NO10/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-27-19-17(15-28)35-25(23(33)21(19)31)37-26-24(34)22(32)20(30)18(16-29)36-26/h17-34H,2-16H2,1H3/t17-,18-,19-,20-,21+,22+,23-,24-,25-,26-/m1/s1
    Key: CBNACTPWHANYMM-PCIRLDFKSA-N
  • C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)O)O)O)O)NCCCCCCCCCCCCCC)O
Properties
C26H51NO10
Molar mass 537.691 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

IMCTA-C14 is an N-tetradecyl (C14) derivative of trehalosamine, a bacterial metabolite. It was synthesized as a sugar-based surfactant containing a trehalose substructure from the condensation of 4-trehalosamine and tetradecanal. [1] Its surfactant properties are not very different from those of other sugar-based surfactant with aliphatic chains of similar length. [1] However, IMCTA-C14 shows similar biological activity to trehalose at low concentrations. [1] [2]

For the induction of autophagy in cultured cells, trehalose is required at a high concentration of about 10-100 mM. In contrast, IMCTA-C14 shows similar activity at about 1/3000 of that concentration. [1] To illustrate this, expression of the metabolic clock gene, Period 1, was induced more strongly in cultured hepatocytes at a concentration 1/1000 that of trehalose. [2] The reason for its strong biological activity is thought to be that it has a fatty chain length similar to that of the phospholipids that make up the cell membrane, and a highly basic secondary amine. This gives it a strong affinity for the cell membrane, thereby enhancing its proximity to and effect on the glucose transporter [3] [4] and sweet taste receptor, [5] membrane proteins, the functions of which are modulated by trehalose and other carbohydrates. [1]

References

  1. 1 2 3 4 5 Wada SI, Arimura H, Nagayoshi M, Sawa R, Kubota Y, Matoba K, et al. (June 2022). "Rediscovery of 4-Trehalosamine as a Biologically Stable, Mass-Producible, and Chemically Modifiable Trehalose Analog". Advanced Biology. 6 (6): e2101309. doi: 10.1002/adbi.202101309 . PMID   35297567.
  2. 1 2 Sun J, Zhang Y, Adams JA, Higgins CB, Kelly SC, Zhang H, et al. (October 2024). "Hepatocyte Period 1 dictates oxidative substrate selection independent of the core circadian clock". Cell Reports. 43 (10): 114865. doi:10.1016/j.celrep.2024.114865. PMC   11601098 . PMID   39412985.
  3. DeBosch BJ, Heitmeier MR, Mayer AL, Higgins CB, Crowley JR, Kraft TE, et al. (February 2016). "Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis". Science Signaling. 9 (416): ra21. doi:10.1126/scisignal.aac5472. PMC   4816640 . PMID   26905426.
  4. Mayer AL, Higgins CB, Heitmeier MR, Kraft TE, Qian X, Crowley JR, et al. (December 2016). "SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy". Scientific Reports. 6 (1): 38586. Bibcode:2016NatSR...638586M. doi:10.1038/srep38586. PMC   5138640 . PMID   27922102.
  5. Lee J, Kim SJ, Choi GE, Yi E, Park HJ, Choi WS, et al. (August 2022). "Sweet taste receptor agonists attenuate macrophage IL-1β expression and eosinophilic inflammation linked to autophagy deficiency in myeloid cells". Clinical and Translational Medicine. 12 (8): e1021. doi:10.1002/ctm2.1021. PMC   9393075 . PMID   35988262.