IUoU battery charging

Last updated
Example charging graph. On the left: per-cell quantities. On the right: example values for a 40 Ah, 6-cell (12 V) battery. Note: schematic illustration; not based on actual measurements. IUoU charging graph.png
Example charging graph. On the left: per-cell quantities. On the right: example values for a 40 Ah, 6-cell (12 V) battery. Note: schematic illustration; not based on actual measurements.

IUoU is a DIN-designation [1] (DIN 41773) for a lead-acid battery charging procedure that is also known as 3-stage charging, 3-phase charging, or 3-step charging. It consists of three phases (or stages), to be executed by a battery charger. The three phases are: I-phase (constant electric current), Uo-phase (constant over-voltage), and U-phase (constant voltage). The purpose is to fully charge the battery in a relatively short time without reducing its life span and to keep the battery charged indefinitely as long as the charger is connected.

Contents

Stages

Stage 1 is called the I-phase, constant-current stage, or bulk charge stage. This phase occurs when an IUoU charger is connected to a deeply discharged battery. The charger provides a constant current, typically the maximum current that the charger is capable of producing. As a result of this current, the battery absorbs a charge and its voltage rises. The charger limits the maximum voltage to Umax, a constant or temperature-dependent maximum, typically around 2.4 V per cell. Once the Umax voltage is reached, typically when the battery is charged to 70–80% of its capacity, [1] the charger enters the Uo-phase. In case of a battery that is more than 80% full, this may happen immediately once the charger is switched on. Some chargers [1] may keep the voltage at Umax for some time to allow the current to drop to 20% of the initial current value, before proceeding to the next stage.

Stage 2 is called the Uo-phase, constant-voltage boost stage, absorption stage, or topping charge. In this stage, the battery is continued being charged at a constant (over)voltage Uo, but the charge current is decreasing. The decrease is imposed by the battery. The voltage in the Uo-phase is too high to be applied indefinitely (hence, overvoltage), but it allows charging the battery fully in a relatively short time. The Uo-phase is concluded when the charge current goes below a threshold Imin, after which the U-phase is entered. This happens when the battery is charged to around 95% of its capacity. [1] Some chargers [2] follow this stage by a second constant-current stage (with a gradually increasing voltage) before continuing with the U-phase. The voltage Uo may be the same as Umax in the previous stage, or it may be taken slightly higher.

Stage 3 is called the U-phase or float charge state, the voltage is reduced to a value that is safe to be applied for long periods (weeks) without significantly reducing the lifetime of the battery. During this phase, the charge current decreases gradually to a small residual value that compensates for any self-discharge of the battery.

Voltages and currents

The current in the I-phase (stage 1) should be chosen depending on the capacity of the battery. In practice, it depends on the capability of the charger. The battery capacity C is expressed in Ah units, typically the C20 value based on a 20-hour discharge time. [3] The charging current (in A units) can be written as C/t where t is a time. For example, for a battery with C = 40 Ah, a current C/10 is equal to 4 A. The charging current is a compromise between charging time (favoring high currents), the prevention of damage due to overheating or outgassing (favoring low currents), and cost of the charger (favoring low currents). Recommendations for the maximum charging current vary between C/10 [2] and C/2. [3] At high charging currents, active cooling measures may be necessary to prevent overheating. [3]

The voltages in the U and Uo phases (stages 2 and 3) depend on the type of battery and the temperature. Batteries have varying numbers of cells (typically six for an automotive battery) and may be flooded-cell, absorbed-glass-matt (AGM), or gel-electrolyte types. The numbers in the table below are for a temperature around 20 °C (68 °F). [1] [3] For temperatures that deviate more than about 5 °C (10 °F), a correction should be applied of 5 mV/°C (2.8 mV/°F) per cell [1] or 0.03 V/°C (17 mV/°F) for a 12 V (6-cell) battery (higher voltages at lower temperatures and vice versa).

3-stage battery charging voltages and currents at 20 °C (72 °F)
Battery typeRef.Stage 1Stage 2Stage 3
Umax (V)IUo (V)IminU (V)
Wet/flooded, single cell [1] 2.32< C/52.42I/102.27
[3] 2.47< C/22.47–2.50C/1002.25–2.30
[2] 2.37–2.47C/102.37–2.47C/332.19
Wet/flooded, 6-cell (12 V) [1] 13.9< C/514.5I/1013.6
[3] 14.8< C/214.8--15.0C/100

(Max 24 hours. [3] )

13.5--13.8
AGM, 6-cell (12 V) [1] 13.9< C/514.5I/1013.6
[3] 14.1< C/214.1--14.4C/10013.6--13.8
Gel electrolyte, 6-cell (12 V) [1] 13.9< C/514.1I/1013.6
[3] 14.1< C/214.1--14.4C/10013.5--13.8
Deep-cycle antimony, 6-cell (12 V) [3] 14.7< C/214.7--14.9C/10013.2--13.4

Special cases

A bad battery will have short I-phase and Uo-phase, but there is a risk of gassing, further damaging the battery.

If a battery is connected to a significant load during charging, the end of the Uo-phase may never be reached and the battery will gas and be damaged, depending on the charge current relative to the battery capacity.

Related Research Articles

<span class="mw-page-title-main">Uninterruptible power supply</span> Electrical device that uses batteries to prevent any interruption of power flow

An uninterruptible power supply (UPS) or uninterruptible power source is a type of continual power system that provides automated backup electric power to a load when the input power source or mains power fails. A UPS differs from a traditional auxiliary/emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions by switching to energy stored in battery packs, supercapacitors or flywheels. The on-battery run-times of most UPSs are relatively short but sufficient to "buy time" for initiating a standby power source or properly shutting down the protected equipment. Almost all UPSs also contain integrated surge protection to shield the output appliances from voltage spikes.

<span class="mw-page-title-main">Nickel–metal hydride battery</span> Type of rechargeable battery

A nickel metal hydride battery is a type of rechargeable battery. The chemical reaction at the positive electrode is similar to that of the nickel–cadmium cell (NiCd), with both using nickel oxide hydroxide (NiOOH). However, the negative electrodes use a hydrogen-absorbing alloy instead of cadmium. NiMH batteries can have two to three times the capacity of NiCd batteries of the same size, with significantly higher energy density, although much less than lithium-ion batteries.

<span class="mw-page-title-main">Nickel–cadmium battery</span> Type of rechargeable battery

The nickel–cadmium battery is a type of rechargeable battery using nickel oxide hydroxide and metallic cadmium as electrodes. The abbreviation Ni–Cd is derived from the chemical symbols of nickel (Ni) and cadmium (Cd): the abbreviation NiCad is a registered trademark of SAFT Corporation, although this brand name is commonly used to describe all Ni–Cd batteries.

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. The negative electrode of a conventional lithium-ion cell is typically graphite, a form of carbon. This negative electrode is sometimes called the anode as it acts as an anode during discharge. The positive electrode is typically a metal oxide; the positive electrode is sometimes called the cathode as it acts as a cathode during discharge. Positive and negative electrodes remain positive and negative in normal use whether charging or discharging and are therefore clearer terms than anode and cathode, which are reversed during charging.

<span class="mw-page-title-main">Rechargeable battery</span> Type of electrical battery

A rechargeable battery, storage battery, or secondary cell, is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulates and stores energy through a reversible electrochemical reaction. Rechargeable batteries are produced in many different shapes and sizes, ranging from button cells to megawatt systems connected to stabilize an electrical distribution network. Several different combinations of electrode materials and electrolytes are used, including lead–acid, zinc–air, nickel–cadmium (NiCd), nickel–metal hydride (NiMH), lithium-ion (Li-ion), lithium iron phosphate (LiFePO4), and lithium-ion polymer.

<span class="mw-page-title-main">Lead–acid battery</span> Rechargeable battery type often used in motor vehicles

The lead–acid battery is a type of rechargeable battery first invented in 1859 by French physicist Gaston Planté. It is the first type of rechargeable battery ever created. Compared to modern rechargeable batteries, lead–acid batteries have relatively low energy density. Despite this, their ability to supply high surge currents means that the cells have a relatively large power-to-weight ratio. These features, along with their low cost, make them attractive for use in motor vehicles to provide the high current required by starter motors. Lead-acid batteries suffer from relatively short cycle lifespan and overall lifespan, as well as slow or long charging time.

Memory effect, also known as battery effect, lazy battery effect, or battery memory, is an effect observed in nickel-cadmium rechargeable batteries that causes them to hold less charge. It describes the situation in which nickel-cadmium batteries gradually lose their maximum energy capacity if they are repeatedly recharged after being only partially discharged. The battery appears to "remember" the smaller capacity.

<span class="mw-page-title-main">Alkaline battery</span> Type of electrical cell

An alkaline battery is a type of primary battery where the electrolyte has a pH value above 7. Typically these batteries derive energy from the reaction between zinc metal and manganese dioxide.

<span class="mw-page-title-main">Automotive battery</span> Rechargeable battery for starting a cars combustion engine

An automotive battery or car battery is a rechargeable battery that is used to start a motor vehicle. Its main purpose is to provide an electric current to the electric-powered starting motor, which in turn starts the chemically-powered internal combustion engine that actually propels the vehicle. Once the engine is running, power for the car's electrical systems is still supplied by the battery, with the alternator charging the battery as demands increase or decrease.

<span class="mw-page-title-main">AA battery</span> Standardized type of battery

The AA battery is a standard size single cell cylindrical dry battery. The IEC 60086 system calls the size R6, and ANSI C18 calls it 15. It is named UM-3 by JIS of Japan. Historically, it is known as D14, U12 – later U7, or HP7 in official documentation in the United Kingdom, or a pen cell.

<span class="mw-page-title-main">Battery pack</span> Set of batteries or battery cells

A battery pack is a set of any number of (preferably) identical batteries or individual battery cells. They may be configured in a series, parallel or a mixture of both to deliver the desired voltage, capacity, or power density. The term battery pack is often used in reference to cordless tools, radio-controlled hobby toys, and battery electric vehicles.

Peukert's law, presented by the German scientist Wilhelm Peukert in 1897, expresses approximately the change in capacity of rechargeable lead–acid batteries at different rates of discharge. As the rate of discharge increases, the battery's available capacity decreases, approximately according to Peukert's law.

<span class="mw-page-title-main">Battery charger</span> Device used to provide electricity

A battery charger, recharger, or simply charger, is a device that stores energy in a battery by running an electric current through it. The charging protocol depends on the size and type of the battery being charged. Some battery types have high tolerance for overcharging and can be recharged by connection to a constant voltage source or a constant current source, depending on battery type. Simple chargers of this type must be manually disconnected at the end of the charge cycle. Other battery types use a timer to cut off when charging should be complete. Other battery types cannot withstand over-charging, becoming damaged, over heating or even exploding. The charger may have temperature or voltage sensing circuits and a microprocessor controller to safely adjust the charging current and voltage, determine the state of charge, and cut off at the end of charge. Chargers may elevate the output voltage proportionally with current to compensate for impedance in the wires.

<span class="mw-page-title-main">Nickel–zinc battery</span> Type of rechargeable battery

A nickel–zinc battery, abbreviated NiZn, is a type of rechargeable battery similar to NiCd batteries, but with a higher voltage of 1.6 V.

Float voltage is the voltage at which a battery is maintained after being fully charged to maintain that capacity by compensating for self-discharge of the battery. The voltage could be held constant for the entire duration of the cell's operation or could be held for a particular phase of charging by the charger. The appropriate float voltage varies significantly with the chemistry and construction of the battery, and ambient temperature.

A battery management system (BMS) is any electronic system that manages a rechargeable battery, such as by protecting the battery from operating outside its safe operating area, monitoring its state, calculating secondary data, reporting that data, controlling its environment, authenticating it and / or balancing it.

<span class="mw-page-title-main">Electric battery</span> Power source with electrochemical cells

A battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal. When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy. Historically the term "battery" specifically referred to a device composed of multiple cells; however, the usage has evolved to include devices composed of a single cell.

<span class="mw-page-title-main">Battery balancing</span> Techniques that improve the available capacity of a battery pack

Battery balancing and battery redistribution refer to techniques that improve the available capacity of a battery pack with multiple cells and increase each cell's longevity. A battery balancer or battery regulator is an electrical device in a battery pack that performs battery balancing. Balancers are often found in lithium-ion battery packs for laptop computers, electrical vehicles. etc.

<span class="mw-page-title-main">Supercapacitor</span> Electrochemical capacitor

A supercapacitor (SC), also called an ultracapacitor, is a high-capacity capacitor, with a capacitance value much higher than other capacitors but with lower voltage limits. It bridges the gap between electrolytic capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy per unit volume or mass than electrolytic capacitors, can accept and deliver charge much faster than batteries, and tolerates many more charge and discharge cycles than rechargeable batteries.

<span class="mw-page-title-main">Electric car charging methods</span>

Various methods exist for recharging the batteries of electric cars. Currently, the largest concern surrounding electric vehicle transportation is the total travel range available before the need to recharge. The longest range recorded till date was 606.2 miles, achieved by a Tesla Model 3. However, this was conducted in very controlled conditions where the car maintained a constant speed without the added drain of the air conditioning compressor. Typically, the battery would last for approximately 300 miles - the equivalent to three days of city commuting in warmer weather, or one day in colder weather. With these limitations, long-distance trips are currently unsuited for an electric car unless rapid charging stations are available on the route of the trip.

References