Impedance control

Last updated

Impedance control is an approach to dynamic control relating force and position. It is often used in applications where a manipulator interacts with its environment and the force position relation is of concern. Examples of such applications include humans interacting with robots, where the force produced by the human relates to how fast the robot should move/stop. Simpler control methods, such as position control or torque control, perform poorly when the manipulator experiences contacts. Thus impedance control is commonly used in these settings.

Contents

Mechanical impedance is the ratio of force output to motion input. This is analogous to electrical impedance that is the ratio of voltage output to current input (e.g. resistance is voltage divided by current). A "spring constant" defines the force output for a displacement (extension or compression) of the spring. A "damping constant" defines the force output for a velocity input. If we control the impedance of a mechanism, we are controlling the force of resistance to external motions that are imposed by the environment.

Mechanical admittance is the inverse of impedance - it defines the motions that result from a force input. If a mechanism applies a force to the environment, the environment will move, or not move, depending on its properties and the force applied. For example, a marble sitting on a table will react very differently to a given force than will a log floating in a lake.

The key theory behind the method is to treat the environment as an admittance and the manipulator as an impedance. It assumes the postulate that "no controller can make the manipulator appear to the environment as anything other than a physical system." This rule of thumb can also be stated as: "in the most common case in which the environment is an admittance (e.g. a mass, possibly kinematically constrained) that relation should be an impedance, a function, possibly nonlinear, dynamic, or even discontinuous, specifying the force produced in response to a motion imposed by the environment." [1]

Principle

Impedance control doesn't simply regulate the force or position of a mechanism. Instead it regulates the relationship between force and position on the one hand, and velocity and acceleration on the other hand, i.e. the impedance of the mechanism. It requires a position (velocity or acceleration) as input and has a resulting force as output. The inverse of impedance is admittance. It imposes position. So actually the controller imposes a spring-mass-damper behavior on the mechanism by maintaining a dynamic relationship between force and position, velocity and acceleration : , with being friction and being static force.

Masses () and springs (with stiffness ) are energy storing elements, whereas a damper (with damping ) is an energy dissipating device. If we can control impedance, we are able to control energy exchange during interaction, i.e. the work being done. So impedance control is interaction control. [2]

Note that mechanical systems are inherently multi-dimensional - a typical robot arm can place an object in three dimensions ( coordinates) and in three orientations (e.g. roll, pitch, yaw). In theory, an impedance controller can cause the mechanism to exhibit a multi-dimensional mechanical impedance. For example, the mechanism might act very stiff along one axis and very compliant along another. By compensating for the kinematics and inertias of the mechanism, we can orient those axes arbitrarily and in various coordinate systems. For example, we might cause a robotic part holder to be very stiff tangentially to a grinding wheel, while being very compliant (controlling force with little concern for position) in the radial axis of the wheel.

Mathematical basics

Joint space

An uncontrolled robot can be expressed in Lagrangian formulation as

,

 

 

 

 

(1)

where denotes joint angular position, is the symmetric and positive-definite inertia matrix, the Coriolis and centrifugal torque, the gravitational torque, includes further torques from, e.g., inherent stiffness, friction, etc., and summarizes all the external forces from the environment. The actuation torque on the left side is the input variable to the robot.

One may propose a control law of the following form:

 

 

 

 

(2)

where denotes the desired joint angular position, and are the control parameters, and , , , and are the internal model of the corresponding mechanical terms.

Inserting ( 2 ) into ( 1 ) gives an equation of the closed-loop system (controlled robot):

Let , one obtains

Since the matrices and have the dimension of stiffness and damping, they are commonly referred to as stiffness and damping matrix, respectively. Clearly, the controlled robot is essentially a multi-dimensional mechanical impedance (mass-spring-damper) to the environment, which is addressed by .

Task space

The same principle also applies to task space. An uncontrolled robot has the following task-space representation in Lagrangian formulation:

,

where denotes joint angular position, task-space position, the symmetric and positive-definite task-space inertia matrix. The terms , , , and are the generalized force of the Coriolis and centrifugal term, the gravitation, further nonlinear terms, and environmental contacts. Note that this representation only applies to robots with redundant kinematics. The generalized force on the left side corresponds to the input torque of the robot.

Analogously, one may propose the following control law:

where denotes the desired task-space position, and are the task-space stiffness and damping matrices, and , , , and are the internal model of the corresponding mechanical terms.

Similarly, one has

,

 

 

 

 

(3)

as the closed-loop system, which is essentially a multi-dimensional mechanical impedance to the environment () as well. Thus, one can choose desired impedance (mainly stiffness) in the task space. For example, one may want to make the controlled robot act very stiff along one direction while relatively compliant along others by setting

assuming the task space is a three-dimensional Euclidean space. The damping matrix is usually chosen such that the closed-loop system ( 3 ) is stable. [3]

Applications

Impedance control is used in applications such as robotics as a general strategy to send commands to a robotics arm and end effector that takes into account the non-linear kinematics and dynamics of the object being manipulated. [4]

Related Research Articles

<span class="mw-page-title-main">Jerk (physics)</span> Rate of change of acceleration with time

In physics, jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s3 (SI units) or standard gravities per second (g0/s).

<span class="mw-page-title-main">Lorentz force</span> Force acting on charged particles in electric and magnetic fields

In physics, the Lorentz force is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of

<span class="mw-page-title-main">Torque</span> Turning force around an axis

In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. It describes the rate of change of angular momentum that would be imparted to an isolated body.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

<span class="mw-page-title-main">Inverted pendulum</span> Pendulum with center of mass above pivot

An inverted pendulum is a pendulum that has its center of mass above its pivot point. It is unstable and without additional help will fall over. It can be suspended stably in this inverted position by using a control system to monitor the angle of the pole and move the pivot point horizontally back under the center of mass when it starts to fall over, keeping it balanced. The inverted pendulum is a classic problem in dynamics and control theory and is used as a benchmark for testing control strategies. It is often implemented with the pivot point mounted on a cart that can move horizontally under control of an electronic servo system as shown in the photo; this is called a cart and pole apparatus. Most applications limit the pendulum to 1 degree of freedom by affixing the pole to an axis of rotation. Whereas a normal pendulum is stable when hanging downwards, an inverted pendulum is inherently unstable, and must be actively balanced in order to remain upright; this can be done either by applying a torque at the pivot point, by moving the pivot point horizontally as part of a feedback system, changing the rate of rotation of a mass mounted on the pendulum on an axis parallel to the pivot axis and thereby generating a net torque on the pendulum, or by oscillating the pivot point vertically. A simple demonstration of moving the pivot point in a feedback system is achieved by balancing an upturned broomstick on the end of one's finger.

In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

<span class="mw-page-title-main">Rigid body dynamics</span> Study of the effects of forces on undeformable bodies

In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.

In the physics of electromagnetism, the Abraham–Lorentz force is the reaction force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, or the self-force. It is named after the physicists Max Abraham and Hendrik Lorentz.

<span class="mw-page-title-main">Hamilton's principle</span> Formulation of the principle of stationary action

In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system. Although formulated originally for classical mechanics, Hamilton's principle also applies to classical fields such as the electromagnetic and gravitational fields, and plays an important role in quantum mechanics, quantum field theory and criticality theories.

<span class="mw-page-title-main">Viscoplasticity</span> Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

Mechanics of planar particle motion is the analysis of the motion of particles gravitationally attracted to one another observed from non-inertial reference frames and the generalization of this problem to planetary motion. This type of analysis is closely related to centrifugal force, two-body problem, orbit and Kepler's laws of planetary motion. The mechanics of planar particle motion fall in the general field of analytical dynamics, and helps determine orbits from the given force laws. This article is focused more on the kinematic issues surrounding planar motion, which are the determination of the forces necessary to result in a certain trajectory given the particle trajectory.

<span class="mw-page-title-main">Vibration</span> Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.

<span class="mw-page-title-main">Furuta pendulum</span>

The Furuta pendulum, or rotational inverted pendulum, consists of a driven arm which rotates in the horizontal plane and a pendulum attached to that arm which is free to rotate in the vertical plane. It was invented in 1992 at Tokyo Institute of Technology by Katsuhisa Furuta and his colleagues. It is an example of a complex nonlinear oscillator of interest in control system theory. The pendulum is underactuated and extremely non-linear due to the gravitational forces and the coupling arising from the Coriolis and centripetal forces. Since then, dozens, possibly hundreds of papers and theses have used the system to demonstrate linear and non-linear control laws. The system has also been the subject of two texts.

In physics, magnetization dynamics is the branch of solid-state physics that describes the evolution of the magnetization of a material.

In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center. In a few important cases, the problem can be solved analytically, i.e., in terms of well-studied functions such as trigonometric functions.

The magnetic radiation reaction force is a force on an electromagnet when its magnetic moment changes. One can derive an electric radiation reaction force for an accelerating charged particle caused by the particle emitting electromagnetic radiation. Likewise, a magnetic radiation reaction force can be derived for an accelerating magnetic moment emitting electromagnetic radiation.

Orbit modeling is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity. Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects. Directly modeling an orbit can push the limits of machine precision due to the need to model small perturbations to very large orbits. Because of this, perturbation methods are often used to model the orbit in order to achieve better accuracy.

The Bueno-Orovio–Cherry–Fenton model, also simply called Bueno-Orovio model, is a minimal ionic model for human ventricular cells. It belongs to the category of phenomenological models, because of its characteristic of describing the electrophysiological behaviour of cardiac muscle cells without taking into account in a detailed way the underlying physiology and the specific mechanisms occurring inside the cells.

<span class="mw-page-title-main">Force control</span> Force control is given by the machine

Force control is the control of the force with which a machine or the manipulator of a robot acts on an object or its environment. By controlling the contact force, damage to the machine as well as to the objects to be processed and injuries when handling people can be prevented. In manufacturing tasks, it can compensate for errors and reduce wear by maintaining a uniform contact force. Force control achieves more consistent results than position control, which is also used in machine control. Force control can be used as an alternative to the usual motion control, but is usually used in a complementary way, in the form of hybrid control concepts. The acting force for control is usually measured via force transducers or estimated via the motor current.

References

  1. Hogan, N. (June 6–8, 1984). "Impedance Control: An Approach to Manipulation" (PDF). American Control Conference. pp. 304, 313. Archived (PDF) from the original on December 21, 2021. Retrieved September 19, 2013.{{cite web}}: CS1 maint: date and year (link)
  2. Buchli, J. (July 12, 2011). "Force, compliance, impedance and interaction control, Summer school dynamic walking and running with robots" (PDF). pp. 212–243. Archived from the original (PDF) on October 16, 2017.
  3. Albu-Schäffer, A.; Ott, C.; Hirzinger, G. (2004), "A passivity based Cartesian impedance controller for flexible joint robots - part II: full state feedback, impedance design and experiments.", In Proceedings of the 2004 IEEE International Conference on Robotics and Automation, pp. 2666–2672
  4. Dietrich, A. (2016). Whole-Body Impedance Control of Wheeled Humanoid Robots. Springer International Publishing. ISBN   978-3-319-40556-8. Archived from the original on September 7, 2017. Retrieved September 1, 2017.