In-situ processing also known as in-storage processing (ISP) is a computer science term that refers to processing data where it resides. In-situ means "situated in the original, natural, or existing place or position." An in-situ process processes data where it is stored, such as in solid-state drives (SSDs) or memory devices like NVDIMM, rather than sending the data to a computer's central processing unit (CPU).
The technology utilizes embedded processing engines inside the storage devices to make them capable of running user applications in-place, so data does not need to leave the device to be processed. The technology is not new, but modern SSD architecture, as well as the availability of powerful embedded processors, make it more appealing to run user applications in-place. [1] SSDs deliver higher data throughput in comparison to hard disk drives (HDDs). Additionally, in contrast to the HDDs, the SSDs can handle multiple I/O commands at the same time.
The SSDs contain a considerable amount of processing horsepower for managing flash memory array and providing a high-speed interface to host machines. These processing capabilities can provide an environment to run user applications in-place. The computational storage device (CSD) term refers to an SSD which is capable of running user applications in-place. In an efficient CSD architecture, the embedded in-storage processing subsystem has access to the data stored in flash memory array through a low-power and high-speed link. The deployment of such CSDs in clusters can increase the overall performance and efficiency of big data and high-performance computing (HPC) applications. [1]
Webscale data center designers have been trying to develop storage architectures that favor high-capacity hosts. In the following figure (from [1] ), such a storage system is shown where 64 SSDs are attached to a host. For the sake of simplicity, only the details of one SSD are demonstrated. Modern SSDs usually contain 16 or more flash memory channels which can be utilized concurrently for flash memory array I/O operations. Considering 512 MB/s bandwidth per channel, the internal bandwidth of an SSD with 16 flash memory channels is about 8 GB/s. This huge bandwidth decreases to about 1 GB/s due to the complexity of the host interface software and hardware architecture. In other words, the accumulated bandwidth of all internal channels of the 64 SSDs reaches the multiplication of the number of SSDs, the number of channels per SSD, and 512 MB/s (bandwidth of each channel) which is equal to 512 GB/s. While the accumulated bandwidth of the SSDs’ external interfaces is equal to 64 multiply by 1 GB/s (the host interface bandwidth of each SSD) which is 64 GB/s. However, In order to talk to the host, all SSDs required to be connected to a PCIe switch. Hence, the available bandwidth of the host is limited to 32 GB/s.
Overall, there is a 16X gap between the accumulated internal bandwidth of all SSDs and the bandwidth available to the host. In other words, for reading 32 TB of data, the host needs 16 minutes while internal components of the SSDs can read the same amount of data in about 1 minute. Additionally, in such storage systems, data need to continuously move through the complex hardware and software stack between hosts and storage units, which imposes a considerable amount of energy consumption and dramatically decreases the energy efficiency of large data centers. Hence, storage architects need to develop techniques to decrease data movement, and ISP technology has been introduced to overcome the aforementioned challenges by moving the process to data.
The computational storage technology minimizes the data movements in a cluster and also increases the processing horsepower of the cluster by augmenting power-efficient processing engines to the whole system. This technology can potentially be applied to both HDDs and SSDs; however, modern SSD architecture provides better tools for developing such technologies. The SSDs which can run user application in-place are called computational storage devices (CSDs). These storage units are augmentable processing resources, which means they are not designed to replace the high-end processors of modern servers. Instead, they can collaborate with the host's CPU and augment their efficient processing horsepower to the system. The scientific article “Computational storage: an efficient and scalable platform for big data and HPC applications” [1] which is published by Springer Publishing under open access policy (free for the public to access) shows the benefits of CSD utilization in the clusters.
Examples of in-storage processing can be seen in fields like visualization efforts, [2] biology [3] and chemistry. This showcases how this technology allows for actions and results to be seen more efficiently than through data movement, regardless of the data being moved. The following figures (from [1] ) show how CSDs can be utilized in an Apache Hadoop cluster and on a Message Passing Interface-based distributed environment.
In the storage industry, implementations from several companies are now available, including from NGD Systems, [4] ScaleFlux [5] and Eideticom. [6] Other companies have tried to do similar work in the past, including Micron Technology [7] and Samsung. The approach from all of these are the same direction, managing or processing data where it resided.
NGD Systems was the first company to create in-situ processing storage and has produced two versions of the device since 2017. The Catalina-1 was a standalone SSD that offered 24 TB of flash along with processing. [4] A second product called Newport was released in 2018 that offered up to 32 TB of flash memory. [8] [9]
ScaleFlux uses a CSS-1000 NVMe device that uses host resourcing and kernel changes to address the device and use Host resources to manage up to 6.4 TB flash on the device, or base SSD. [10] Eideticom utilizes a device called a No-Load DRAM-only NVMe device as an accelerator with no actual flash storage for persistent data. [11] Micron called their version ‘Scale In’ at a Flash Memory Summit (FMS) event in 2013 but was never able to productize it and was based on a SATA SSD in production. [7] Samsung has worked on various versions of devices from KV Store and others. [12]
A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnetic material. The platters are paired with magnetic heads, usually arranged on a moving actuator arm, which read and write data to the platter surfaces. Data is accessed in a random-access manner, meaning that individual blocks of data can be stored and retrieved in any order. HDDs are a type of non-volatile storage, retaining stored data when powered off. Modern HDDs are typically in the form of a small rectangular box.
Flash memory is an electronic non-volatile computer memory storage medium that can be electrically erased and reprogrammed. The two main types of flash memory, NOR flash and NAND flash, are named for the NOR and NAND logic gates. Both use the same cell design, consisting of floating gate MOSFETs. They differ at the circuit level depending on whether the state of the bit line or word lines is pulled high or low: in NAND flash, the relationship between the bit line and the word lines resembles a NAND gate; in NOR flash, it resembles a NOR gate.
Western Digital Corporation is an American computer drive manufacturer and data storage company, headquartered in San Jose, California. It designs, manufactures and sells data technology products, including data storage devices, data center systems and cloud storage services.
Seagate Technology Holdings plc is an American data storage company. It was incorporated in 1978 as Shugart Technology and commenced business in 1979. Since 2010, the company has been incorporated in Dublin, Ireland, with operational headquarters in Fremont, California, United States.
Input/output operations per second is an input/output performance measurement used to characterize computer storage devices like hard disk drives (HDD), solid state drives (SSD), and storage area networks (SAN). Like benchmarks, IOPS numbers published by storage device manufacturers do not directly relate to real-world application performance.
A hybrid drive is a logical or physical computer storage device that combines a faster storage medium such as solid-state drive (SSD) with a higher-capacity hard disk drive (HDD). The intent is adding some of the speed of SSDs to the cost-effective storage capacity of traditional HDDs. The purpose of the SSD in a hybrid drive is to act as a cache for the data stored on the HDD, improving the overall performance by keeping copies of the most frequently used data on the faster SSD drive.
A NetApp FAS is a computer storage product by NetApp running the ONTAP operating system; the terms ONTAP, AFF, ASA, FAS are often used as synonyms. "Filer" is also used as a synonym although this is not an official name. There are three types of FAS systems: Hybrid, All-Flash, and All SAN Array:
A solid-state drive (SSD) is a solid-state storage device. It provides persistent data storage using no moving parts. It is sometimes called semiconductor storage device or solid-state device. It is also called solid-state disk because it is frequently interfaced to a host system in the same manner as a hard disk drive (HDD).
Write amplification (WA) is an undesirable phenomenon associated with flash memory and solid-state drives (SSDs) where the actual amount of information physically written to the storage media is a multiple of the logical amount intended to be written.
Texas Memory Systems, Inc. (TMS) was an American corporation that designed and manufactured solid-state disks (SSDs) and digital signal processors (DSPs). TMS was founded in 1978 and that same year introduced their first solid-state drive, followed by their first digital signal processor. In 2000 they introduced the RamSan line of SSDs. Based in Houston, Texas, they supply these two product categories to large enterprise and government organizations.
IBM Storwize systems were virtualizing RAID computer data storage systems with raw storage capacities up to 32 PB. Storwize is based on the same software as IBM SAN Volume Controller (SVC).
The Intel X25-M was a line of Serial ATA interface solid-state drives developed by Intel for personal computers, announced in late 2008. The SSD was a multi-level-cell solid-state drive available in a 2.5" form factor, came in 80 GB and 160 GB capacities and utilized NAND flash memory on a 50 nm process. The second-generation SSD which was called the "X25-M G2". The X25-M G2 was also available in a 2.5" form factor and 80 GB and 160 GB capacities, but with NAND flash memory on a more efficient 34 nm process.
NVM Express (NVMe) or Non-Volatile Memory Host Controller Interface Specification (NVMHCIS) is an open, logical-device interface specification for accessing a computer's non-volatile storage media usually attached via the PCI Express bus. The initial NVM stands for non-volatile memory, which is often NAND flash memory that comes in several physical form factors, including solid-state drives (SSDs), PCIe add-in cards, and M.2 cards, the successor to mSATA cards. NVM Express, as a logical-device interface, has been designed to capitalize on the low latency and internal parallelism of solid-state storage devices.
M.2, pronounced m dot two and formerly known as the Next Generation Form Factor (NGFF), is a specification for internally mounted computer expansion cards and associated connectors. M.2 replaces the Mini SATA (mSATA) standard and the Mini PCIe (mPCIe) standard. Employing a more flexible physical specification, M.2 allows different module widths and lengths, which, paired with the availability of more advanced interfacing features, makes M.2 more suitable than mSATA in general for solid-state storage applications, particularly in smaller devices such as ultrabooks and tablets.
SATA Express is a computer bus interface that supports both Serial ATA (SATA) and PCI Express (PCIe) storage devices, initially standardized in the SATA 3.2 specification. The SATA Express connector used on the host side is backward compatible with the standard SATA data connector, while it also provides two PCI Express lanes as a pure PCI Express connection to the storage device.
Solid-state storage (SSS) is non-volatile computer storage that has no moving parts; it uses only electronic circuits. This solid-state design dramatically differs from the commonly-used competing technology of electromechanical magnetic storage which uses moving media coated with magnetic material. Generally, SSS is much faster but more expensive for the same amount of storage.
The Nvidia DGX represents a series of servers and workstations designed by Nvidia, primarily geared towards enhancing deep learning applications through the use of general-purpose computing on graphics processing units (GPGPU). These systems typically come in a rackmount format featuring high-performance x86 server CPUs on the motherboard.
Power10 is a superscalar, multithreading, multi-core microprocessor family, based on the open source Power ISA, and announced in August 2020 at the Hot Chips conference; systems with Power10 CPUs. Generally available from September 2021 in the IBM Power10 Enterprise E1080 server.
IBM FlashCore Modules (FCM) are solid state technology computer data storage modules using PCI Express attachment and the NVMe command set. They are offered as an alternative to industry-standard 2.5" NVMe SSDs in selected arrays from the IBM FlashSystem family, with raw storage capacities of 4.8 TB, 9.6 TB, 19.2 TB and 38.4 TB. FlashCore modules support hardware self-encryption and real-time inline hardware data compression up to 115.2 TB address space, without performance impact.
Leonardo is a petascale supercomputer located at the CINECA datacenter in Bologna, Italy. The system consists of an Atos BullSequana XH2000 computer, with close to 14,000 Nvidia Ampere GPUs and 200 Gbit/s Nvidia Mellanox HDR InfiniBand connectivity. Inaugurated in November 2022, Leonardo is capable of 250 petaflops, making it one of the top five fastest supercomputers in the world. It debuted on the TOP500 in November 2022 ranking fourth in the world, and second in Europe.