High-performance computing

Last updated
The Center for Nanoscale Materials at the Advanced Photon Source Nanoscience High-Performance Computing Facility.jpg
The Center for Nanoscale Materials at the Advanced Photon Source

High-performance computing (HPC) uses supercomputers and computer clusters to solve advanced computation problems.

Contents

Overview

HPC integrates systems administration (including network and security knowledge) and parallel programming into a multidisciplinary field that combines digital electronics, computer architecture, system software, programming languages, algorithms and computational techniques. [1] HPC technologies are the tools and systems used to implement and create high performance computing systems. [2] Recently[ when? ], HPC systems have shifted from supercomputing to computing clusters and grids. [1] Because of the need of networking in clusters and grids, High Performance Computing Technologies are being promoted[ by whom? ] by the use of a collapsed network backbone, because the collapsed backbone architecture is simple to troubleshoot and upgrades can be applied to a single router as opposed to multiple ones.

The term is most commonly associated with computing used for scientific research or computational science. A related term, high-performance technical computing (HPTC), generally refers to the engineering applications of cluster-based computing (such as computational fluid dynamics and the building and testing of virtual prototypes). HPC has also been applied to business uses such as data warehouses, line of business (LOB) applications, and transaction processing.

High-performance computing (HPC) as a term arose after the term "supercomputing". [3] HPC is sometimes used as a synonym for supercomputing; but, in other contexts, "supercomputer" is used to refer to a more powerful subset of "high-performance computers", and the term "supercomputing" becomes a subset of "high-performance computing". [4] The potential for confusion over the use of these terms is apparent.

Because most current applications are not designed for HPC technologies but are retrofitted, they are not designed or tested for scaling to more powerful processors or machines. [2] Since networking clusters and grids use multiple processors and computers, these scaling problems can cripple critical systems in future supercomputing systems. Therefore, either the existing tools do not address the needs of the high performance computing community or the HPC community is unaware of these tools. [2] A few examples of commercial HPC technologies include:

In government and research institutions, scientists simulate galaxy creation, fusion energy, and global warming, as well as work to create more accurate short- and long-term weather forecasts. [5] The world's tenth most powerful supercomputer in 2008, IBM Roadrunner (located at the United States Department of Energy's Los Alamos National Laboratory) [6] simulated the performance, safety, and reliability of nuclear weapons and certifies their functionality. [7]

TOP500

TOP500 ranks the world's 500 fastest high-performance computers, as measured by the High Performance LINPACK (HPL) benchmark. Not all existing computers are ranked, either because they are ineligible (e.g., they cannot run the HPL benchmark) or because their owners have not submitted an HPL score (e.g., because they do not wish the size of their system to become public information, for defense reasons). In addition, the use of the single LINPACK benchmark is controversial, in that no single measure can test all aspects of a high-performance computer. To help overcome the limitations of the LINPACK test, the U.S. government commissioned one of its originators, Jack Dongarra of the University of Tennessee, to create a suite of benchmark tests that includes LINPACK and others, called the HPC Challenge benchmark suite. This evolving suite has been used in some HPC procurements, but, because it is not reducible to a single number, it has been unable to overcome the publicity advantage of the less useful TOP500 LINPACK test. The TOP500 list is updated twice a year, once in June at the ISC European Supercomputing Conference and again at a US Supercomputing Conference in November.

Many ideas for the new wave of grid computing were originally borrowed from HPC.

High performance computing in the cloud

Traditionally, HPC has involved an on-premises infrastructure, investing in supercomputers or computer clusters. Over the last decade, cloud computing has grown in popularity for offering computer resources in the commercial sector regardless of their investment capabilities. [8] Some characteristics like scalability and containerization also have raised interest in academia. [9] However security in the cloud concerns such as data confidentiality are still considered when deciding between cloud or on-premise HPC resources. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Supercomputer</span> Type of extremely powerful computer

A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2017, supercomputers have existed which can perform over 1017 FLOPS (a hundred quadrillion FLOPS, 100 petaFLOPS or 100 PFLOPS). For comparison, a desktop computer has performance in the range of hundreds of gigaFLOPS (1011) to tens of teraFLOPS (1013). Since November 2017, all of the world's fastest 500 supercomputers run on Linux-based operating systems. Additional research is being conducted in the United States, the European Union, Taiwan, Japan, and China to build faster, more powerful and technologically superior exascale supercomputers.

In computing, floating point operations per second is a measure of computer performance, useful in fields of scientific computations that require floating-point calculations. For such cases, it is a more accurate measure than measuring instructions per second.

<span class="mw-page-title-main">NEC SX</span>

NEC SX describes a series of vector supercomputers designed, manufactured, and marketed by NEC. This computer series is notable for providing the first computer to exceed 1 gigaflop, as well as the fastest supercomputer in the world between 1992–1993, and 2002–2004. The current model, as of 2018, is the SX-Aurora TSUBASA.

The Texas Advanced Computing Center (TACC) at the University of Texas at Austin, United States, is an advanced computing research center that is based on comprehensive advanced computing resources and supports services to researchers in Texas and across the U.S. The mission of TACC is to enable discoveries that advance science and society through the application of advanced computing technologies. Specializing in high performance computing, scientific visualization, data analysis & storage systems, software, research & development and portal interfaces, TACC deploys and operates advanced computational infrastructure to enable the research activities of faculty, staff, and students of UT Austin. TACC also provides consulting, technical documentation, and training to support researchers who use these resources. TACC staff members conduct research and development in applications and algorithms, computing systems design/architecture, and programming tools and environments.

<span class="mw-page-title-main">TOP500</span> Database project devoted to the ranking of computers

The TOP500 project ranks and details the 500 most powerful non-distributed computer systems in the world. The project was started in 1993 and publishes an updated list of the supercomputers twice a year. The first of these updates always coincides with the International Supercomputing Conference in June, and the second is presented at the ACM/IEEE Supercomputing Conference in November. The project aims to provide a reliable basis for tracking and detecting trends in high-performance computing and bases rankings on HPL benchmarks, a portable implementation of the high-performance LINPACK benchmark written in Fortran for distributed-memory computers.

In computing, performance per watt is a measure of the energy efficiency of a particular computer architecture or computer hardware. Literally, it measures the rate of computation that can be delivered by a computer for every watt of power consumed. This rate is typically measured by performance on the LINPACK benchmark when trying to compare between computing systems: an example using this is the Green500 list of supercomputers. Performance per watt has been suggested to be a more sustainable measure of computing than Moore's Law.

Windows HPC Server 2008, released by Microsoft on 22 September 2008, is the successor product to Windows Compute Cluster Server 2003. Like WCCS, Windows HPC Server 2008 is designed for high-end applications that require high performance computing clusters. This version of the server software is claimed to efficiently scale to thousands of cores. It includes features unique to HPC workloads: a new high-speed NetworkDirect RDMA, highly efficient and scalable cluster management tools, a service-oriented architecture (SOA) job scheduler, an MPI library based on open-source MPICH2, and cluster interoperability through standards such as the High Performance Computing Basic Profile (HPCBP) specification produced by the Open Grid Forum (OGF).

<span class="mw-page-title-main">Tianhe-1</span> Supercomputer

Tianhe-I, Tianhe-1, or TH-1 is a supercomputer capable of an Rmax of 2.5 peta FLOPS. Located at the National Supercomputing Center of Tianjin, China, it was the fastest computer in the world from October 2010 to June 2011 and was one of the few petascale supercomputers in the world.

Exascale computing refers to computing systems capable of calculating at least "1018 IEEE 754 Double Precision (64-bit) operations (multiplications and/or additions) per second (exaFLOPS)"; it is a measure of supercomputer performance.

HPC Challenge Benchmark combines several benchmarks to test a number of independent attributes of the performance of high-performance computer (HPC) systems. The project has been co-sponsored by the DARPA High Productivity Computing Systems program, the United States Department of Energy and the National Science Foundation.

The Swiss National Supercomputing Centre is the national high-performance computing centre of Switzerland. It was founded in Manno, canton Ticino, in 1991. In March 2012, the CSCS moved to its new location in Lugano-Cornaredo.

Supercomputing in India has a history going back to the 1980s. The Government of India created an indigenous development programme as they had difficulty purchasing foreign supercomputers. As of June 2023, the AIRAWAT supercomputer is the fastest supercomputer in India, having been ranked 75th fastest in the world in the TOP500 supercomputer list. AIRAWAT has been installed at the Centre for Development of Advanced Computing (C-DAC) in Pune.

<span class="mw-page-title-main">K computer</span> Supercomputer in Kobe, Japan

The K computer – named for the Japanese word/numeral "kei" (京), meaning 10 quadrillion (1016) – was a supercomputer manufactured by Fujitsu, installed at the Riken Advanced Institute for Computational Science campus in Kobe, Hyōgo Prefecture, Japan. The K computer was based on a distributed memory architecture with over 80,000 compute nodes. It was used for a variety of applications, including climate research, disaster prevention and medical research. The K computer's operating system was based on the Linux kernel, with additional drivers designed to make use of the computer's hardware.

<span class="mw-page-title-main">Supercomputing in Japan</span> Overview of supercomputing in Japan

Japan operates a number of centers for supercomputing which hold world records in speed, with the K computer being the world's fastest from June 2011 to June 2012, and Fugaku holding the lead from June 2020 until June 2022.

<span class="mw-page-title-main">Supercomputing in Europe</span> Overview of supercomputing in Europe

Several centers for supercomputing exist across Europe, and distributed access to them is coordinated by European initiatives to facilitate high-performance computing. One such initiative, the HPC Europa project, fits within the Distributed European Infrastructure for Supercomputing Applications (DEISA), which was formed in 2002 as a consortium of eleven supercomputing centers from seven European countries. Operating within the CORDIS framework, HPC Europa aims to provide access to supercomputers across Europe.

The LINPACK Benchmarks are a measure of a system's floating-point computing power. Introduced by Jack Dongarra, they measure how fast a computer solves a dense n by n system of linear equations Ax = b, which is a common task in engineering.

<span class="mw-page-title-main">Supercomputer architecture</span> Design of high-performance computers

Approaches to supercomputer architecture have taken dramatic turns since the earliest systems were introduced in the 1960s. Early supercomputer architectures pioneered by Seymour Cray relied on compact innovative designs and local parallelism to achieve superior computational peak performance. However, in time the demand for increased computational power ushered in the age of massively parallel systems.

<span class="mw-page-title-main">NCAR-Wyoming Supercomputing Center</span> High performance computing center in Wyoming, US

The NCAR-Wyoming Supercomputing Center (NWSC) is a high-performance computing (HPC) and data archival facility located in Cheyenne, Wyoming, that provides advanced computing services to researchers in the Earth system sciences.

The High Performance Conjugate Gradients Benchmark is a supercomputing benchmark test proposed by Michael Heroux from Sandia National Laboratories, and Jack Dongarra and Piotr Luszczek from the University of Tennessee. It is intended to model the data access patterns of real-world applications such as sparse matrix calculations, thus testing the effect of limitations of the memory subsystem and internal interconnect of the supercomputer on its computing performance. Because it is internally I/O bound, HPCG testing generally achieves only a tiny fraction of the peak FLOPS the computer could theoretically deliver.

<span class="mw-page-title-main">Fugaku (supercomputer)</span> Japanese supercomputer

Fugaku(Japanese: 富岳) is a petascale supercomputer at the Riken Center for Computational Science in Kobe, Japan. It started development in 2014 as the successor to the K computer and made its debut in 2020. It is named after an alternative name for Mount Fuji.

References

  1. 1 2 Brazell, Jim; Bettersworth, Michael (2005). High Performance Computing (Report). Texas State Technical College. Archived from the original on 2010-07-31.
  2. 1 2 3 Collette, Michael; Corey, Bob; Johnson, John (December 2004). High Performance Tools & Technologies (PDF) (Report). Lawrence Livermore National Laboratory, U.S. Department of Energy. Archived from the original (PDF) on 2017-08-30.
  3. "supercomputing" . Oxford English Dictionary (Online ed.). Oxford University Press.(Subscription or participating institution membership required.) "Supercomputing" is attested from 1944.
  4. Kurgalin, Sergei; Borzunov, Sergei (2019). "A Practical Approach to High-Performance Computing". SpringerLink. doi:10.1007/978-3-030-27558-7.
  5. Schulman, Michael. "High Performance Computing: RAM vs CPU". Dr. Dobbs High Performance Computing, April 30, 2007.
  6. "Launching a New Class of U.S. Supercomputing". Department of Energy. 17 November 2022.
  7. "High Performance Computing". US Department of Energy. Archived from the original on 30 July 2009.
  8. 1 2 Morgan Eldred; Dr. Alice Good; Carl Adams (24 January 2018). "A case study on data protection and security decisions in cloud HPC" (PDF). School of Computing, University of Portsmouth, Portsmouth, U.K.
  9. Sebastian von Alfthan (2016). "High-performance computing in the cloud?" (PDF). CSC – IT Center for Science.