Explicit parallelism

Last updated

In computer programming, explicit parallelism is the representation of concurrent computations using primitives in the form of operators, function calls or special-purpose directives. [1] Most parallel primitives are related to process synchronization, communication and process partitioning. [2] As they seldom contribute to actually carry out the intended computation of the program but, rather, structure it, their computational cost is often considered as overhead.

The advantage of explicit parallel programming is increased programmer control over the computation. A skilled parallel programmer may take advantage of explicit parallelism to produce efficient code for a given target computation environment. However, programming with explicit parallelism is often difficult, especially for non-computing specialists, because of the extra work and skill involved in developing it.

In some instances, explicit parallelism may be avoided with the use of an optimizing compiler or runtime that automatically deduces the parallelism inherent to computations, known as implicit parallelism.

Programming languages that support explicit parallelism

Some of the programming languages that support explicit parallelism are:

Related Research Articles

In computer science, an abstract machine is a theoretical model that allows for a detailed and precise analysis of how a computer system functions. It is similar to a mathematical function in that it receives inputs and produces outputs based on predefined rules. Abstract machines vary from literal machines in that they are expected to perform correctly and independently of hardware. Abstract machines are "machines" because they allow step-by-step execution of programmes; they are "abstract" because they ignore many aspects of actual (hardware) machines. A typical abstract machine consists of a definition in terms of input, output, and the set of allowable operations used to turn the former into the latter. They can be used for purely theoretical reasons as well as models for real-world computer systems. In the theory of computation, abstract machines are often used in thought experiments regarding computability or to analyse the complexity of algorithms. This use of abstract machines is fundamental to the field of computational complexity theory, such as finite state machines, Mealy machines, push-down automata, and Turing machines.

A programming paradigm is a relatively high-level way to structure and conceptualize the implementation of a computer program. A programming language can be classified as supporting one or more paradigms.

In computer science, an algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; for some operations, these algorithms provide a useful alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread progress. "Non-blocking" was used as a synonym for "lock-free" in the literature until the introduction of obstruction-freedom in 2003.

<span class="mw-page-title-main">Concurrency (computer science)</span> Ability to execute a task in a non-serial manner

In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.

MultiLisp is a functional programming language, a dialect of the language Lisp, and of its dialect Scheme, extended with constructs for parallel computing execution and shared memory. These extensions involve side effects, rendering MultiLisp nondeterministic. Along with its parallel-programming extensions, MultiLisp also had some unusual garbage collection and task scheduling algorithms. Like Scheme, MultiLisp was optimized for symbolic computing. Unlike some parallel programming languages, MultiLisp incorporated constructs for causing side effects and for explicitly introducing parallelism.

Unified Parallel C (UPC) is an extension of the C programming language designed for high-performance computing on large-scale parallel machines, including those with a common global address space and those with distributed memory. The programmer is presented with a single partitioned global address space; where shared variables may be directly read and written by any processor, but each variable is physically associated with a single processor. UPC uses a single program, multiple data (SPMD) model of computation in which the amount of parallelism is fixed at program startup time, typically with a single thread of execution per processor.

In computer programming, dataflow programming is a programming paradigm that models a program as a directed graph of the data flowing between operations, thus implementing dataflow principles and architecture. Dataflow programming languages share some features of functional languages, and were generally developed in order to bring some functional concepts to a language more suitable for numeric processing. Some authors use the term datastream instead of dataflow to avoid confusion with dataflow computing or dataflow architecture, based on an indeterministic machine paradigm. Dataflow programming was pioneered by Jack Dennis and his graduate students at MIT in the 1960s.

General-purpose computing on graphics processing units is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU). The use of multiple video cards in one computer, or large numbers of graphics chips, further parallelizes the already parallel nature of graphics processing.

In computing, a parallel programming model is an abstraction of parallel computer architecture, with which it is convenient to express algorithms and their composition in programs. The value of a programming model can be judged on its generality: how well a range of different problems can be expressed for a variety of different architectures, and its performance: how efficiently the compiled programs can execute. The implementation of a parallel programming model can take the form of a library invoked from a sequential language, as an extension to an existing language, or as an entirely new language.

Concurrent computing is a form of computing in which several computations are executed concurrently—during overlapping time periods—instead of sequentially—with one completing before the next starts.

Thread Level Speculation (TLS), also known as Speculative Multi-threading, or Speculative Parallelization, is a technique to speculatively execute a section of computer code that is anticipated to be executed later in parallel with the normal execution on a separate independent thread. Such a speculative thread may need to make assumptions about the values of input variables. If these prove to be invalid, then the portions of the speculative thread that rely on these input variables will need to be discarded and squashed. If the assumptions are correct the program can complete in a shorter time provided the thread was able to be scheduled efficiently.

Explicit Multi-Threading (XMT) is a computer science paradigm for building and programming parallel computers designed around the parallel random-access machine (PRAM) parallel computational model. A more direct explanation of XMT starts with the rudimentary abstraction that made serial computing simple: that any single instruction available for execution in a serial program executes immediately. A consequence of this abstraction is a step-by-step (inductive) explication of the instruction available next for execution. The rudimentary parallel abstraction behind XMT, dubbed Immediate Concurrent Execution (ICE) in Vishkin (2011), is that indefinitely many instructions available for concurrent execution execute immediately. A consequence of ICE is a step-by-step (inductive) explication of the instructions available next for concurrent execution. Moving beyond the serial von Neumann computer, the aspiration of XMT is that computer science will again be able to augment mathematical induction with a simple one-line computing abstraction.

In computing, algorithmic skeletons, or parallelism patterns, are a high-level parallel programming model for parallel and distributed computing.

SequenceL is a general purpose functional programming language and auto-parallelizing compiler and tool set, whose primary design objectives are performance on multi-core processor hardware, ease of programming, platform portability/optimization, and code clarity and readability. Its main advantage is that it can be used to write straightforward code that automatically takes full advantage of all the processing power available, without programmers needing to be concerned with identifying parallelisms, specifying vectorization, avoiding race conditions, and other challenges of manual directive-based programming approaches such as OpenMP.

In parallel computing, work stealing is a scheduling strategy for multithreaded computer programs. It solves the problem of executing a dynamically multithreaded computation, one that can "spawn" new threads of execution, on a statically multithreaded computer, with a fixed number of processors. It does so efficiently in terms of execution time, memory usage, and inter-processor communication.

<span class="mw-page-title-main">Fork–join model</span> Way of setting up and executing parallel computer programs

In parallel computing, the fork–join model is a way of setting up and executing parallel programs, such that execution branches off in parallel at designated points in the program, to "join" (merge) at a subsequent point and resume sequential execution. Parallel sections may fork recursively until a certain task granularity is reached. Fork–join can be considered a parallel design pattern. It was formulated as early as 1963.

In computer science, the analysis of parallel algorithms is the process of finding the computational complexity of algorithms executed in parallel – the amount of time, storage, or other resources needed to execute them. In many respects, analysis of parallel algorithms is similar to the analysis of sequential algorithms, but is generally more involved because one must reason about the behavior of multiple cooperating threads of execution. One of the primary goals of parallel analysis is to understand how a parallel algorithm's use of resources changes as the number of processors is changed.

In computing, a memory access pattern or IO access pattern is the pattern with which a system or program reads and writes memory on secondary storage. These patterns differ in the level of locality of reference and drastically affect cache performance, and also have implications for the approach to parallelism and distribution of workload in shared memory systems. Further, cache coherency issues can affect multiprocessor performance, which means that certain memory access patterns place a ceiling on parallelism.

In computer science, purely functional programming usually designates a programming paradigm—a style of building the structure and elements of computer programs—that treats all computation as the evaluation of mathematical functions.

In parallel computing, granularity of a task is a measure of the amount of work which is performed by that task.

References

  1. von Praun, Christoph (June 2011). Parallel programming: design of an overview class. Proceedings of the 2011 ACM SIGPLAN X10 Workshop. pp. 1–6. doi:10.1145/2212736.2212738.
  2. Dijkstra, Edsger W. (May 1, 1968). "The structure of the "THE"-multiprogramming system". Communications of the ACM. 11 (5): 341–346. doi:10.1145/363095.363143.