TOP500 | |
---|---|
Key people |
|
Established | 24 June 1993 |
Website | top500.org |
The TOP500 project ranks and details the 500 most powerful non-distributed computer systems in the world. The project was started in 1993 and publishes an updated list of the supercomputers twice a year. The first of these updates always coincides with the International Supercomputing Conference in June, and the second is presented at the ACM/IEEE Supercomputing Conference in November. The project aims to provide a reliable basis for tracking and detecting trends in high-performance computing and bases rankings on HPL benchmarks, [1] a portable implementation of the high-performance LINPACK benchmark written in Fortran for distributed-memory computers.
The most recent edition of TOP500 was published in November 2024 as the 64th edition of TOP500, while the next edition of TOP500 will be published in June 2025 as the 65th edition of TOP500. As of November 2024, the United States' El Capitan is the most powerful supercomputer on TOP500, reaching 1742 petaFlops (1.742 exaFlops) on the LINPACK benchmarks. [2] As of 2018, the United States has by far the highest share of total computing power on the list (nearly 50%). [3] As of 2024, the United States has the highest number of systems with 173 supercomputers, China is in second place with 63, and Germany being third at 40.
The 59th edition of TOP500, published in June 2022, was the first edition of TOP500 to feature only 64-bit supercomputers; as of June 2022, 32-bit supercomputers are no longer listed.[ citation needed ] The TOP500 list is compiled by Jack Dongarra of the University of Tennessee, Knoxville, Erich Strohmaier and Horst Simon of the National Energy Research Scientific Computing Center (NERSC) and Lawrence Berkeley National Laboratory (LBNL), and, until his death in 2014, Hans Meuer of the University of Mannheim, Germany.[ citation needed ] The TOP500 project also includes lists such as Green500 (measuring energy efficiency) and HPCG (measuring I/O bandwidth).[ citation needed ]
In the early 1990s, a new definition of supercomputer was needed to produce meaningful statistics. After experimenting with metrics based on processor count in 1992, the idea arose at the University of Mannheim to use a detailed listing of installed systems as the basis. In early 1993, Jack Dongarra was persuaded to join the project with his LINPACK benchmarks. A first test version was produced in May 1993, partly based on data available on the Internet, including the following sources: [4] [5]
The information from those sources was used for the first two lists. Since June 1993, the TOP500 is produced bi-annually based on site and vendor submissions only. Since 1993, performance of the No. 1 ranked position has grown steadily in accordance with Moore's law, doubling roughly every 14 months. In June 2018, Summit was fastest with an Rpeak [8] of 187.6593 PFLOPS. For comparison, this is over 1,432,513 times faster than the Connection Machine CM-5/1024 (1,024 cores), which was the fastest system in November 1993 (twenty-five years prior) with an Rpeak of 131.0 GFLOPS. [9]
As of June 2022 [update] , all supercomputers on TOP500 are 64-bit supercomputers, mostly based on CPUs with the x86-64 instruction set architecture, 384 of which are Intel EMT64-based and 101 of which are AMD AMD64-based, with the latter including the top eight supercomputers. 15 other supercomputers are all based on RISC architectures, including six based on ARM64 and seven based on the Power ISA used by IBM Power microprocessors.[ citation needed ]
In recent years, heterogeneous computing has dominated the TOP500, mostly using Nvidia's graphics processing units (GPUs) or Intel's x86-based Xeon Phi as coprocessors. This is because of better performance per watt ratios and higher absolute performance. AMD GPUs have taken the top 1 and displaced Nvidia in top 10 part of the list. The recent exceptions include the aforementioned Fugaku, Sunway TaihuLight, and K computer. Tianhe-2A is also an interesting exception, as US sanctions prevented use of Xeon Phi; instead, it was upgraded to use the Chinese-designed Matrix-2000 [10] accelerators.[ citation needed ]
Two computers which first appeared on the list in 2018 were based on architectures new to the TOP500. One was a new x86-64 microarchitecture from Chinese manufacturer Sugon, using Hygon Dhyana CPUs (these resulted from a collaboration with AMD, and are a minor variant of Zen-based AMD EPYC) and was ranked 38th, now 117th, [11] and the other was the first ARM-based computer on the list – using Cavium ThunderX2 CPUs. [12] Before the ascendancy of 32-bit x86 and later 64-bit x86-64 in the early 2000s, a variety of RISC processor families made up most TOP500 supercomputers, including SPARC, MIPS, PA-RISC, and Alpha.
All the fastest supercomputers since the Earth Simulator supercomputer have used operating systems based on Linux. Since November 2017 [update] , all the listed supercomputers use an operating system based on the Linux kernel. [13] [14]
Since November 2015, no computer on the list runs Windows (while Microsoft reappeared on the list in 2021 with Ubuntu based on Linux). In November 2014, Windows Azure [15] cloud computer was no longer on the list of fastest supercomputers (its best rank was 165th in 2012), leaving the Shanghai Supercomputer Center's Magic Cube as the only Windows-based supercomputer on the list, until it also dropped off the list. It was ranked 436th in its last appearance on the list released in June 2015, while its best rank was 11th in 2008. [16] There are no longer any Mac OS computers on the list. It had at most five such systems at a time, one more than the Windows systems that came later, while the total performance share for Windows was higher. Their relative performance share of the whole list was however similar, and never high for either. In 2004, the System X supercomputer based on Mac OS X (Xserve, with 2,200 PowerPC 970 processors) once ranked 7th place. [17]
It has been well over a decade since MIPS systems dropped entirely off the list [18] though the Gyoukou supercomputer that jumped to 4th place [19] in November 2017 had a MIPS-based design as a small part of the coprocessors. Use of 2,048-core coprocessors (plus 8× 6-core MIPS, for each, that "no longer require to rely on an external Intel Xeon E5 host processor" [20] ) made the supercomputer much more energy efficient than the other top 10 (i.e. it was 5th on Green500 and other such ZettaScaler-2.2-based systems take first three spots). [21] At 19.86 million cores, it was by far the largest system by core-count, with almost double that of the then-best manycore system, the Chinese Sunway TaihuLight.
As of November 2024 [update] , the number one supercomputer is El Capitan, the leader on Green500 is JEDI, a Bull Sequana XH3000 system using the Nvidia Grace Hopper GH200 Superchip. In June 2022, the top 4 systems of Graph500 used both AMD CPUs and AMD accelerators. After an upgrade, for the 56th TOP500 in November 2020,
Fugaku grew its HPL performance to 442 petaflops, a modest increase from the 416 petaflops the system achieved when it debuted in June 2020. More significantly, the ARMv8.2 based Fugaku increased its performance on the new mixed precision HPC-AI benchmark to 2.0 exaflops, besting its 1.4 exaflops mark recorded six months ago. These represent the first benchmark measurements above one exaflop for any precision on any type of hardware. [22]
Summit, a previously fastest supercomputer, is currently highest-ranked IBM-made supercomputer; with IBM POWER9 CPUs. Sequoia became the last IBM Blue Gene/Q model to drop completely off the list; it had been ranked 10th on the 52nd list (and 1st on the June 2012, 41st list, after an upgrade).
For the first time, all 500 systems deliver a petaflop or more on the High Performance Linpack (HPL) benchmark, with the entry level to the list now at 1.022 petaflops." However, for a different benchmark "Summit and Sierra remain the only two systems to exceed a petaflop on the HPCG benchmark, delivering 2.9 petaflops and 1.8 petaflops, respectively. The average HPCG result on the current list is 213.3 teraflops, a marginal increase from 211.2 six months ago. [23]
Microsoft is back on the TOP500 list with six Microsoft Azure instances (that use/are benchmarked with Ubuntu, so all the supercomputers are still Linux-based), with CPUs and GPUs from same vendors, the fastest one currently 11th, [24] and another older/slower previously made 10th. [25] And Amazon with one AWS instance currently ranked 64th (it was previously ranked 40th). The number of Arm-based supercomputers is 6; currently all Arm-based supercomputers use the same Fujitsu CPU as in the number 2 system, with the next one previously ranked 13th, now 25th. [26]
Rank (previous) | Rmax Rpeak (PetaFLOPS) | Name | Model | CPU cores | Accelerator (e.g. GPU) cores | Total Cores (CPUs + Accelerators) | Interconnect | Manufacturer | Site country | Year | Operating system |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1,742.00 2,746.38 | El Capitan | HPE Cray EX255a | 1,051,392 (43,808 × 24-core Optimized 4th Generation EPYC 24C @1.8 GHz) | 9,988,224 (43,808 × 228 AMD Instinct MI300A) | 11,039,616 | Slingshot-11 | HPE | Lawrence Livermore National Laboratory United States | 2024 | Linux (TOSS) |
2 | 1,353.00 2,055.72 | Frontier | HPE Cray EX235a | 614,656 (9,604 × 64-core Optimized 3rd Generation EPYC 64C @2.0 GHz) | 8,451,520 (38,416 × 220 AMD Instinct MI250X) | 9,066,176 | Slingshot-11 | HPE | Oak Ridge National Laboratory United States | 2022 | Linux (HPE Cray OS) |
3 | 1,012.00 1,980.01 | Aurora | HPE Cray EX | 1,104,896 (21,248 × 52-core Intel Xeon Max 9470 @2.4 GHz) | 8,159,232 (63,744 × 128 Intel Max 1550) | 9,264,128 | Slingshot-11 | HPE | Argonne National Laboratory United States | 2023 | Linux (SUSE Linux Enterprise Server 15 SP4) |
4 | 561.20 846.84 | Eagle | Microsoft NDv5 | 172,800 (3,600 × 48-core Intel Xeon Platinum 8480C @2.0 GHz) | 1,900,800 (14,400 × 132 Nvidia Hopper H100) | 2,073,600 | NVIDIA Infiniband NDR | Microsoft | Microsoft United States | 2023 | Linux (Ubuntu 22.04) |
5 | 477.90 606.97 | HPC6 | HPE Cray EX235a | 213,120 (3,330 × 64-core Optimized 3rd Generation EPYC 64C @2.0 GHz) | 2,930,400 (13,320 × 220 AMD Instinct MI250X) | 3,143,520 | Slingshot-11 | HPE | Eni S.p.A European Union, Ferrera Erbognone, Italy | 2024 | Linux (RHEL 8.9) |
6 | 442.01 537.21 | Fugaku | Supercomputer Fugaku | 7,630,848 (158,976 × 48-core Fujitsu A64FX @2.2 GHz) | - | 7,630,848 | Tofu interconnect D | Fujitsu | Riken Center for Computational Science Japan | 2020 | Linux (RHEL) |
7 | 434.90 574.84 | Alps | HPE Cray EX254n | 748,800 (10,400 × 72-Arm Neoverse V2 cores Nvidia Grace @3.1 GHz) | 1,372,800 (10,400 × 132 Nvidia Hopper H100) | 2,121,600 | Slingshot-11 | HPE | CSCS Swiss National Supercomputing Centre Switzerland | 2024 | Linux (HPE Cray OS) |
8 | 379.70 531.51 | LUMI | HPE Cray EX235a | 186,624 (2,916 × 64-core Optimized 3rd Generation EPYC 64C @2.0 GHz) | 2,566,080 (11,664 × 220 AMD Instinct MI250X) | 2,752,704 | Slingshot-11 | HPE | EuroHPC JU European Union, Kajaani, Finland | 2022 | Linux (HPE Cray OS) |
9 | 241.20 306.31 | Leonardo | BullSequana XH2000 | 110,592 (3,456 × 32-core Xeon Platinum 8358 @2.6 GHz) | 1,714,176 (15,872 × 108 Nvidia Ampere A100) | 1,824,768 | Quad-rail NVIDIA HDR100 Infiniband | Atos | EuroHPC JU European Union, Bologna, Italy | 2023 | Linux (RHEL 8) [28] |
10 | 208.10 288.88 | Tuolumne | HPE Cray EX255a | 110,592 (4,608 × 24-core Optimized 4th Generation EPYC 24C @1.8 GHz) | 1,050,624 (4,608 × 228 AMD Instinct MI300A) | 1,161,216 | Slingshot-11 | HPE | Lawrence Livermore National Laboratory United States | 2024 | Linux (TOSS) |
Legend: [29]
Numbers below represent the number of computers in the TOP500 that are in each of the listed countries or territories. As of 2024, United States has the most supercomputers on the list, with 173 machines. The United States has the highest aggregate computational power at 6,324 Petaflops Rmax with Japan second (919 Pflop/s) and Germany third (396 Pflop/s).
Country or Territory | Systems |
---|---|
United States | |
China | |
Germany | |
Japan | |
France | |
United Kingdom | |
Italy | |
South Korea | |
Netherlands | |
Brazil | |
Canada | |
Sweden | |
Poland | |
Taiwan | |
Saudi Arabia | |
India | |
Russia | |
Norway | |
Switzerland | |
Australia | |
Singapore | |
Ireland | |
Finland | |
Spain | |
United Arab Emirates | |
Austria | |
Czechia | |
Thailand | |
Bulgaria | |
Turkey |
Country/Region | Nov 2024 [32] | Jun 2024 [33] | Nov 2023 [34] | Jun 2023 [35] | Nov 2022 [36] | Jun 2022 [37] | Nov 2021 [38] | Jun 2021 [39] | Nov 2020 [40] | Jun 2020 [41] | Nov 2019 [42] | Jun 2019 [43] | Nov 2018 [44] | Jun 2018 [45] | Nov 2017 [46] | Jun 2017 [47] | Nov 2016 [48] | Jun 2016 [49] | Nov 2015 [50] | Jun 2015 [51] | Nov 2014 [52] | Jun 2014 [53] | Nov 2013 [54] | Jun 2013 [55] | Nov 2012 [56] | Jun 2012 [57] | Nov 2011 [58] | Jun 2011 [59] | Nov 2010 [60] | Jun 2010 [61] | Nov 2009 [62] | Jun 2009 [63] | Nov 2008 [64] | Jun 2008 [65] | Nov 2007 [66] | Jun 2007 [67] | Nov 2006 [68] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
United States | 173 | 171 | 161 | 150 | 127 | 128 | 149 | 122 | 113 | 114 | 117 | 116 | 109 | 124 | 143 | 168 | 171 | 165 | 199 | 233 | 231 | 232 | 264 | 252 | 251 | 252 | 263 | 255 | 274 | 282 | 277 | 291 | 290 | 257 | 283 | 281 | 309 |
EU | 129 | 123 | 112 | 103 | 101 | 92 | 83 | 93 | 79 | 79 | 87 | 92 | 91 | 93 | 86 | 99 | 95 | 93 | 94 | 122 | 110 | 103 | 89 | 97 | 89 | 96 | 95 | 109 | 108 | 126 | 137 | 134 | 140 | 169 | 133 | 115 | 82 |
China | 63 | 80 | 104 | 134 | 162 | 173 | 173 | 188 | 214 | 226 | 228 | 220 | 227 | 206 | 202 | 160 | 171 | 168 | 109 | 37 | 61 | 76 | 63 | 66 | 72 | 68 | 74 | 61 | 41 | 24 | 21 | 21 | 15 | 12 | 10 | 13 | 18 |
Germany | 40 | 40 | 36 | 36 | 34 | 31 | 26 | 23 | 17 | 16 | 16 | 13 | 17 | 21 | 21 | 28 | 31 | 26 | 33 | 37 | 26 | 22 | 20 | 19 | 19 | 20 | 20 | 30 | 26 | 24 | 27 | 29 | 25 | 46 | 31 | 24 | 18 |
Japan | 34 | 29 | 32 | 33 | 31 | 33 | 32 | 34 | 34 | 29 | 29 | 28 | 31 | 36 | 35 | 33 | 27 | 29 | 37 | 40 | 32 | 30 | 28 | 30 | 32 | 35 | 30 | 26 | 26 | 18 | 16 | 15 | 17 | 22 | 20 | 23 | 30 |
France | 24 | 24 | 23 | 24 | 24 | 22 | 19 | 16 | 18 | 19 | 18 | 20 | 18 | 18 | 18 | 18 | 20 | 18 | 18 | 27 | 30 | 27 | 22 | 23 | 21 | 22 | 23 | 25 | 26 | 27 | 26 | 23 | 26 | 34 | 17 | 13 | 12 |
United Kingdom | 14 | 16 | 15 | 14 | 15 | 12 | 11 | 11 | 12 | 10 | 11 | 18 | 20 | 22 | 15 | 17 | 13 | 11 | 18 | 29 | 30 | 30 | 23 | 29 | 24 | 25 | 27 | 27 | 25 | 38 | 45 | 44 | 46 | 53 | 48 | 42 | 30 |
Italy | 14 | 11 | 12 | 7 | 7 | 6 | 6 | 6 | 6 | 7 | 5 | 5 | 6 | 5 | 6 | 8 | 6 | 5 | 4 | 4 | 3 | 5 | 5 | 6 | 7 | 8 | 4 | 5 | 6 | 7 | 6 | 6 | 11 | 6 | 6 | 5 | 8 |
South Korea | 13 | 13 | 12 | 8 | 8 | 6 | 7 | 5 | 3 | 3 | 3 | 5 | 6 | 7 | 5 | 8 | 4 | 7 | 10 | 9 | 9 | 8 | 5 | 4 | 4 | 3 | 3 | 4 | 3 | 1 | 2 | 0 | 1 | 1 | 1 | 5 | 6 |
Netherlands | 10 | 9 | 10 | 8 | 8 | 6 | 11 | 16 | 15 | 15 | 15 | 13 | 6 | 9 | 6 | 4 | 3 | 3 | 2 | 3 | 5 | 5 | 3 | 2 | 0 | 0 | 0 | 1 | 2 | 4 | 3 | 3 | 3 | 5 | 6 | 8 | 2 |
Brazil | 9 | 8 | 9 | 9 | 8 | 6 | 5 | 6 | 4 | 4 | 3 | 3 | 1 | 1 | 0 | 2 | 3 | 4 | 6 | 6 | 4 | 4 | 3 | 3 | 2 | 3 | 2 | 2 | 2 | 1 | 1 | 0 | 2 | 1 | 1 | 2 | 4 |
Canada | 9 | 10 | 10 | 10 | 10 | 14 | 11 | 11 | 12 | 12 | 9 | 8 | 9 | 6 | 5 | 6 | 1 | 1 | 6 | 6 | 6 | 9 | 10 | 9 | 11 | 10 | 9 | 8 | 6 | 7 | 9 | 8 | 2 | 2 | 5 | 10 | 8 |
Sweden | 8 | 7 | 6 | 6 | 6 | 5 | 4 | 3 | 2 | 2 | 2 | 2 | 4 | 3 | 5 | 5 | 4 | 5 | 3 | 5 | 5 | 3 | 5 | 7 | 6 | 4 | 3 | 5 | 6 | 8 | 7 | 10 | 8 | 9 | 7 | 10 | 1 |
Poland | 8 | 8 | 4 | 3 | 3 | 5 | 4 | 4 | 2 | 1 | 1 | 1 | 4 | 4 | 5 | 6 | 7 | 6 | 6 | 7 | 2 | 2 | 2 | 3 | 4 | 5 | 6 | 5 | 6 | 5 | 3 | 4 | 6 | 3 | 1 | 0 | 0 |
Taiwan | 7 | 6 | 5 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 2 | 0 | 0 | 0 | 1 | 2 | 3 | 11 | 10 | 2 |
Saudi Arabia | 7 | 8 | 7 | 6 | 6 | 6 | 6 | 6 | 5 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 5 | 5 | 6 | 7 | 4 | 4 | 3 | 4 | 3 | 3 | 3 | 4 | 6 | 4 | 4 | 2 | 0 | 0 | 0 | 2 | 4 |
India | 6 | 4 | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 3 | 4 | 5 | 4 | 4 | 5 | 9 | 11 | 11 | 9 | 9 | 12 | 11 | 8 | 5 | 2 | 2 | 4 | 5 | 3 | 6 | 8 | 6 | 9 | 8 | 10 |
Russia | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 3 | 2 | 2 | 3 | 2 | 3 | 4 | 3 | 3 | 5 | 7 | 7 | 8 | 9 | 5 | 5 | 8 | 8 | 5 | 5 | 12 | 11 | 11 | 8 | 5 | 8 | 9 | 7 | 5 | 2 |
Norway | 6 | 5 | 5 | 4 | 3 | 2 | 1 | 3 | 3 | 3 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 1 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 3 |
Switzerland | 5 | 5 | 3 | 4 | 4 | 4 | 3 | 3 | 3 | 2 | 2 | 4 | 2 | 3 | 3 | 3 | 4 | 3 | 6 | 6 | 7 | 6 | 5 | 4 | 4 | 1 | 3 | 4 | 4 | 5 | 5 | 4 | 4 | 6 | 7 | 5 | 5 |
Australia | 4 | 5 | 6 | 5 | 5 | 5 | 3 | 2 | 2 | 2 | 3 | 5 | 5 | 5 | 4 | 4 | 3 | 5 | 4 | 6 | 9 | 6 | 5 | 5 | 7 | 6 | 4 | 6 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
Singapore | 4 | 3 | 3 | 3 | 3 | 3 | 1 | 4 | 4 | 4 | 4 | 5 | 3 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 2 |
Ireland | 4 | 4 | 4 | 5 | 5 | 3 | 1 | 14 | 14 | 14 | 14 | 13 | 12 | 7 | 4 | 2 | 1 | 3 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
Finland | 3 | 3 | 3 | 3 | 3 | 4 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 3 | 2 | 5 | 2 | 2 | 3 | 2 | 2 | 2 | 3 | 1 | 1 | 2 | 1 | 3 | 2 | 1 | 1 | 1 | 5 | 3 | 1 |
Spain | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 4 | 3 | 2 | 3 | 3 | 6 | 5 | 6 | 7 | 9 | 6 | 7 |
United Arab Emirates | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Austria | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 3 | 3 | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 8 | 5 | 0 | 0 | 0 | 0 | 0 |
Czechia | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Thailand | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bulgaria | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
Turkey | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 1 |
Slovenia | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Denmark | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 0 | 0 | 3 | 0 | 1 | 0 | 1 |
Israel | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 2 | 2 | 2 | 1 | 3 | 3 | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 2 |
Iceland | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Luxembourg | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
Argentina | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Morocco | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Hungary | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Belgium | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 0 | 1 | 1 | 2 | 2 | 1 | 4 | 1 |
Portugal | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Hong Kong | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
South Africa | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 2 |
New Zealand | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 7 | 8 | 5 | 4 | 6 | 1 | 1 | 1 |
Mexico | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 | 1 |
Croatia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Greece | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Malaysia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 3 | 4 | 3 |
Slovak Republic | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Cyprus | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Egypt | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
Indonesia | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
Philippines | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Vietnam | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
(As of November 2023 [69] )
Country/Territory | Fastest supercomputer of country/territory (name) | Rank in TOP500 | Rmax Rpeak (TFlop/s) | Site |
---|---|---|---|---|
United States | El Capitan | 1 | 1,742,000.0 2,746,380.0 | Lawrence Livermore National Laboratory |
Japan | Fugaku | 4 | 442,010.0 537,210.0 | RIKEN |
Finland | LUMI | 5 | 379,700.0 531,510.0 | Center for Scientific Computing |
Italy | Leonardo | 6 | 238,700.0 304,470.0 | CINECA |
Spain | MareNostrum | 8 | 138,200.0 265,570.0 | Barcelona Supercomputing Center |
China | Sunway TaihuLight | 11 | 93,010.0 125,440.0 | National Supercomputing Center, Wuxi |
Netherlands | ISEG | 16 | 46,540.0 86,790.0 | Nebius |
France | Adastra | 17 | 46,100.0 61,610.0 | GENCI-CINES |
Germany | JUWELS (booster module) | 18 | 44,120.0 70,980.0 | Forschungszentrum Jülich |
Saudi Arabia | Shaheen III | 20 | 35,660.0 39,610.0 | Saudi Aramco |
South Korea | Sejong | 22 | 32,970.0 40,770.0 | Naver Corporation |
Australia | Setonix | 25 | 27,160.0 35,000.0 | Pawsey Supercomputing Centre |
Sweden | DeepL Mercury | 34 | 21,850.0 33,850.0 | DeepL SE |
Russia | Chervonenkis | 36 | 21,530.0 29,420.0 | Yandex |
Switzerland | Piz Daint | 37 | 21,230.0 27,150.0 | Swiss National Supercomputing Centre |
United Kingdom | ARCHER2 | 39 | 19,540.0 25,800.0 | EPSRC/University of Edinburgh |
Brazil | Pégaso | 45 | 19,070.0 42,000.0 | Petróleo Brasileiro S.A |
Taiwan | PRIMEHPC FX1000 | 69 | 11,160.0 12,980.0 | Central Weather Administration |
Luxembourg | MeluXina - Accelerator Module | 71 | 10,520.0 15,290.0 | LuxProvide |
India | Airawat | 90 | 8,500.0 13,170.0 | Centre for Development of Advanced Computing |
Thailand | Lanta | 94 | 8,150.0 13,770.0 | NECTEC |
Canada | Underhill | 102 | 7,760.0 10,920.0 | Shared Services Canada |
UAE | Artemis | 107 | 7,260.0 9,490.0 | Group 42 |
Czechia | Karolina, GPU partition | 113 | 6,750.0 9,080.0 | IT4Innovations National Supercomputing Center, VSB-Technical University of Ostrava |
Poland | Athena | 155 | 5,050.0 7,710.0 | AGH University of Science and Technology |
Norway | Betzy | 161 | 4,720.0 6,190.0 | UNINETT Sigma2 AS |
Bulgaria | Discoverer | 166 | 4,520.0 5,940.0 | Consortium Petascale Supercomputer Bulgaria |
Argentina | Clementina XXI | 196 | 3,880.0 5,990.0 | Servicio Meteorológico Nacional |
Slovenia | VEGA HPC CPU | 198 | 3,820.0 5,370.0 | IZUM |
Ireland | AIC1 | 218 | 3,550.0 6,970.0 | Software Company MIR |
Singapore | Aspire 2A | 233 | 3,330.0 6,480.0 | National Supercomputing Centre Singapore |
Morocco | Toubkal | 246 | 3,160.0 5,010.0 | Mohammed VI Polytechnic University - African Supercomputing Centre |
Hungary | Komondor | 266 | 3,100.0 4,510.0 | Governmental Information Technology Development Agency (KIFÜ) |
Austria | VSC-4 | 319 | 2,730.0 3,760.0 | Vienna Scientific Cluster |
Belgium | Lucia | 322 | 2,720.0 5,310.0 | Cenaero |
This section needs additional citations for verification .(September 2019) |
By number of systems as of November 2024 [update] : [78]
Accelerator | Systems |
---|---|
NVIDIA AMPERE A100 (Launched: 2020) | |
NVIDIA TESLA V100 (Launched: 2017) | |
NVIDIA AMPERE A100 SXM4 40 GB (Launched: 2020) | |
NVIDIA HOPPER H100 (Launched: 2022) | |
NVIDIA HOPPER H100 SXM5 80 GB (Launched: 2022) |
Manufacturer | Systems |
---|---|
Lenovo | |
Hewlett Packard Enterprise | |
EVIDEN | |
DELL | |
Nvidia |
Operating System | Systems |
---|---|
Linux | |
CentOS | |
HPE Cray OS | |
Red Hat Enterprise Linux | |
Cray Linux Environment |
Note: All operating systems of the TOP500 systems are Linux-family based, but Linux above is generic Linux.
Sunway TaihuLight is the system with the most CPU cores (10,649,600). Tianhe-2 has the most GPU/accelerator cores (4,554,752). Aurora is the system with the greatest power consumption with 38,698 kilowatts.
In November 2014, it was announced that the United States was developing two new supercomputers to exceed China's Tianhe-2 in its place as world's fastest supercomputer. The two computers, Sierra and Summit, will each exceed Tianhe-2's 55 peak petaflops. Summit, the more powerful of the two, will deliver 150–300 peak petaflops. [79] On 10 April 2015, US government agencies banned selling chips, from Nvidia to supercomputing centers in China as "acting contrary to the national security ... interests of the United States"; [80] and Intel Corporation from providing Xeon chips to China due to their use, according to the US, in researching nuclear weapons –research to which US export control law bans US companies from contributing –"The Department of Commerce refused, saying it was concerned about nuclear research being done with the machine." [81]
On 29 July 2015, President Obama signed an executive order creating a National Strategic Computing Initiative calling for the accelerated development of an exascale (1000 petaflop) system and funding research into post-semiconductor computing. [82]
In June 2016, Japanese firm Fujitsu announced at the International Supercomputing Conference that its future exascale supercomputer will feature processors of its own design that implement the ARMv8 architecture. The Flagship2020 program, by Fujitsu for RIKEN plans to break the exaflops barrier by 2020 through the Fugaku supercomputer, (and "it looks like China and France have a chance to do so and that the United States is content –for the moment at least –to wait until 2023 to break through the exaflops barrier." [83] ) These processors will also implement extensions to the ARMv8 architecture equivalent to HPC-ACE2 that Fujitsu is developing with Arm. [83]
In June 2016, Sunway TaihuLight became the No. 1 system with 93 petaflop/s (PFLOP/s) on the Linpack benchmark. [84]
In November 2016, Piz Daint was upgraded, moving it from 8th to 3rd, leaving the US with no systems under the TOP3 for the 2nd time. [85] [86]
Inspur, based out of Jinan, China, is one of the largest HPC system manufacturers. As of May 2017 [update] , Inspur has become the third manufacturer to have manufactured a 64-way system –a record that has previously been held by IBM and HP. The company has registered over $10B in revenue and has provided a number of systems to countries such as Sudan, Zimbabwe, Saudi Arabia and Venezuela. Inspur was also a major technology partner behind both the Tianhe-2 and Taihu supercomputers, occupying the top 2 positions of the TOP500 list up until November 2017. Inspur and Supermicro released a few platforms aimed at HPC using GPU such as SR-AI and AGX-2 in May 2017. [87]
In June 2018, Summit, an IBM-built system at the Oak Ridge National Laboratory (ORNL) in Tennessee, US, took the No. 1 spot with a performance of 122.3 petaflop/s (PFLOP/s), and Sierra, a very similar system at the Lawrence Livermore National Laboratory, CA, US took #3. These systems also took the first two spots on the HPCG benchmark. Due to Summit and Sierra, the US took back the lead as consumer of HPC performance with 38.2% of the overall installed performance while China was second with 29.1% of the overall installed performance. For the first time ever, the leading HPC manufacturer was not a US company. Lenovo took the lead with 23.8% of systems installed. It is followed by HPE with 15.8%, Inspur with 13.6%, Cray with 11.2%, and Sugon with 11%. [88]
On 18 March 2019, the United States Department of Energy and Intel announced the first exaFLOP supercomputer would be operational at Argonne National Laboratory by the end of 2021. The computer, named Aurora, was delivered to Argonne by Intel and Cray. [89] [90]
On 7 May 2019, The U.S. Department of Energy announced a contract with Cray to build the "Frontier" supercomputer at Oak Ridge National Laboratory. Frontier is anticipated to be operational in 2021 and, with a performance of greater than 1.5 exaflops, should then be the world's most powerful computer. [91]
Since June 2019, all TOP500 systems deliver a petaflop or more on the High Performance Linpack (HPL) benchmark, with the entry level to the list now at 1.022 petaflops. [92]
In May 2022, the Frontier supercomputer broke the exascale barrier, completing more than a quintillion 64-bit floating point arithmetic calculations per second. Frontier clocked in at approximately 1.1 exaflops, beating out the previous record-holder, Fugaku. [93] [94]
Some major systems are not on the list. A prominent example is the NCSA's Blue Waters which publicly announced the decision not to participate in the list [95] because they do not feel it accurately indicates the ability of any system to do useful work. [96] Other organizations decide not to list systems for security and/or commercial competitiveness reasons. One such example is the National Supercomputing Center at Qingdao's OceanLight supercomputer, completed in March 2021, which was submitted for, and won, the Gordon Bell Prize. The computer is an exaflop computer, but was not submitted to the TOP500 list; the first exaflop machine submitted to the TOP500 list was Frontier. Analysts suspected that the reason the NSCQ did not submit what would otherwise have been the world's first exascale supercomputer was to avoid inflaming political sentiments and fears within the United States, in the context of the United States – China trade war. [97] Additional purpose-built machines that are not capable or do not run the benchmark were not included, such as RIKEN MDGRAPE-3 and MDGRAPE-4.
A Google Tensor Processing Unit v4 pod is capable of 1.1 exaflops of peak performance, [98] while TPU v5p claims over 4 exaflops in Bfloat16 floating-point format, [99] however these units are highly specialized to run machine learning workloads and the TOP500 measures a specific benchmark algorithm using a specific numeric precision.
In March 2024, Meta AI disclosed the operation of two datacenters with 24,576 H100 GPUs, [100] which is almost 2x as on the Microsoft Azure Eagle (#3 as of September 2024), which could have made them occupy 3rd and 4th places in TOP500, but neither have been benchmarked. During company's Q3 2024 earnings call in October, M. Zuckerberg disclosed usage of a cluster with over 100,000 H100s. [101]
xAI Memphis Supercluster (also known as "Colossus") allegedly features 100,000 of the same H100 GPUs, which could have put in on the first place, but it is reportedly not in full operation due to power shortages. [102]
IBM Roadrunner [103] is no longer on the list (nor is any other using the Cell coprocessor, or PowerXCell).
Although Itanium-based systems reached second rank in 2004, [104] [105] none now remain.
Similarly (non-SIMD-style) vector processors (NEC-based such as the Earth simulator that was fastest in 2002 [106] ) have also fallen off the list. Also the Sun Starfire computers that occupied many spots in the past now no longer appear.
The last non-Linux computers on the list – the two AIX ones – running on POWER7 (in July 2017 ranked 494th and 495th, [107] originally 86th and 85th), dropped off the list in November 2017.
A supercomputer is a type of computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions per second (MIPS). Since 2022, supercomputers have existed which can perform over 1018 FLOPS, so called exascale supercomputers. For comparison, a desktop computer has performance in the range of hundreds of gigaFLOPS (1011) to tens of teraFLOPS (1013). Since November 2017, all of the world's fastest 500 supercomputers run on Linux-based operating systems. Additional research is being conducted in the United States, the European Union, Taiwan, Japan, and China to build faster, more powerful and technologically superior exascale supercomputers.
Floating point operations per second is a measure of computer performance in computing, useful in fields of scientific computations that require floating-point calculations.
Blue Gene was an IBM project aimed at designing supercomputers that can reach operating speeds in the petaFLOPS (PFLOPS) range, with relatively low power consumption.
Cray Inc., a subsidiary of Hewlett Packard Enterprise, is an American supercomputer manufacturer headquartered in Seattle, Washington. It also manufactures systems for data storage and analytics. Several Cray supercomputer systems are listed in the TOP500, which ranks the most powerful supercomputers in the world.
High-performance computing (HPC) uses supercomputers and computer clusters to solve advanced computation problems.
The Green500 is a biannual ranking of supercomputers, from the TOP500 list of supercomputers, in terms of energy efficiency. The list measures performance per watt using the TOP500 measure of high performance LINPACK benchmarks at double-precision floating-point format.
IBM Sequoia was a petascale Blue Gene/Q supercomputer constructed by IBM for the National Nuclear Security Administration as part of the Advanced Simulation and Computing Program (ASC). It was delivered to the Lawrence Livermore National Laboratory (LLNL) in 2011 and was fully deployed in June 2012. Sequoia was dismantled in 2020, its last position on the top500.org list was #22 in the November 2019 list.
Petascale computing refers to computing systems capable of performing at least 1 quadrillion (10^15) floating-point operations per second (FLOPS). These systems are often called petaflops systems and represent a significant leap from traditional supercomputers in terms of raw performance, enabling them to handle vast datasets and complex computations.
Exascale computing refers to computing systems capable of calculating at least 1018 IEEE 754 Double Precision (64-bit) operations (multiplications and/or additions) per second (exaFLOPS)"; it is a measure of supercomputer performance.
This list compares various amounts of computing power in instructions per second organized by order of magnitude in FLOPS.
The K computer – named for the Japanese word/numeral "kei" (京), meaning 10 quadrillion (1016) – was a supercomputer manufactured by Fujitsu, installed at the Riken Advanced Institute for Computational Science campus in Kobe, Hyōgo Prefecture, Japan. The K computer was based on a distributed memory architecture with over 80,000 compute nodes. It was used for a variety of applications, including climate research, disaster prevention and medical research. The K computer's operating system was based on the Linux kernel, with additional drivers designed to make use of the computer's hardware.
The history of supercomputing goes back to the 1960s when a series of computers at Control Data Corporation (CDC) were designed by Seymour Cray to use innovative designs and parallelism to achieve superior computational peak performance. The CDC 6600, released in 1964, is generally considered the first supercomputer. However, some earlier computers were considered supercomputers for their day such as the 1954 IBM NORC in the 1950s, and in the early 1960s, the UNIVAC LARC (1960), the IBM 7030 Stretch (1962), and the Manchester Atlas (1962), all of which were of comparable power.
Several centers for supercomputing exist across Europe, and distributed access to them is coordinated by European initiatives to facilitate high-performance computing. One such initiative, the HPC Europa project, fits within the Distributed European Infrastructure for Supercomputing Applications (DEISA), which was formed in 2002 as a consortium of eleven supercomputing centers from seven European countries. Operating within the CORDIS framework, HPC Europa aims to provide access to supercomputers across Europe.
Summit or OLCF-4 is a supercomputer developed by IBM for use at Oak Ridge Leadership Computing Facility (OLCF), a facility at the Oak Ridge National Laboratory, United States of America. As of June 2024, it is the 9th fastest supercomputer in the world on the TOP500 list. It held the number 1 position on this list from November 2018 to June 2020. Its current LINPACK benchmark is clocked at 148.6 petaFLOPS.
The Sunway TaihuLight is a Chinese supercomputer which, as of November 2023, is ranked 11th in the TOP500 list, with a LINPACK benchmark rating of 93 petaflops. The name is translated as divine power, the light of Taihu Lake. This is nearly three times as fast as the previous Tianhe-2, which ran at 34 petaflops. As of June 2017, it is ranked as the 16th most energy-efficient supercomputer in the Green500, with an efficiency of 6.1 GFlops/watt. It was designed by the National Research Center of Parallel Computer Engineering & Technology (NRCPC) and is located at the National Supercomputing Center in Wuxi in the city of Wuxi, in Jiangsu province, China.
The High Performance Conjugate Gradients Benchmark is a supercomputing benchmark test proposed by Michael Heroux from Sandia National Laboratories, and Jack Dongarra and Piotr Luszczek from the University of Tennessee.
The European High-Performance Computing Joint Undertaking is a public-private partnership in high-performance computing (HPC), enabling the pooling of European Union–level resources with the resources of participating EU Member States and participating associated states of the Horizon Europe and Digital Europe programmes, as well as private stakeholders. The Joint Undertaking has the twin stated aims of developing a pan-European supercomputing infrastructure, and supporting research and innovation activities. Located in Luxembourg City, Luxembourg, the Joint Undertaking started operating in November 2018 under the control of the European Commission and became autonomous in 2020.
Fugaku(Japanese: 富岳) is a petascale supercomputer at the Riken Center for Computational Science in Kobe, Japan. It started development in 2014 as the successor to the K computer and made its debut in 2020. It is named after an alternative name for Mount Fuji.
Leonardo is a petascale supercomputer located at the CINECA datacenter in Bologna, Italy. The system consists of an Atos BullSequana XH2000 computer, with close to 14,000 Nvidia Ampere GPUs and 200 Gbit/s Nvidia Mellanox HDR InfiniBand connectivity. Inaugurated in November 2022, Leonardo is capable of 250 petaflops, making it one of the top five fastest supercomputers in the world. It debuted on the TOP500 in November 2022 ranking fourth in the world, and second in Europe.
Zettascale computing refers to computing systems capable of calculating at least "1021 IEEE 754 Double Precision (64-bit) operations (multiplications and/or additions) per second (zettaFLOPS)". It is a measure of supercomputer performance, and as of July 2022 is a hypothetical performance barrier. A zettascale computer system could generate more single floating point data in one second than was stored by the total digital means on Earth in the first quarter of 2011.
Powering the ZettaScaler-2.2 is the PEZY-SC2. The SC2 is a second-generation chip featuring twice as many cores – i.e., 2,048 cores with 8-way SMT for a total of 16,384 threads. […] The first-generation SC incorporated two ARM926 cores and while that was sufficient for basic management and debugging its processing power was inadequate for much more. The SC2 uses a hexa-core P-Class P6600 MIPS processor which share the same memory address as the PEZY cores, improving performance and reducing data transfer overhead. With the powerful MIPS management cores, it is now also possible to entirely eliminate the Xeon host processor. However, PEZY has not done so yet.