![]() | This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
A graphing calculator (also graphics calculator or graphic display calculator) is a handheld computer that is capable of plotting graphs, solving simultaneous equations, and performing other tasks with variables. Most popular graphing calculators are programmable calculators, allowing the user to create customized programs, typically for scientific, engineering or education applications. They have large screens that display several lines of text and calculations.
An early graphing calculator was designed in 1921 by electrical engineer Edith Clarke. [1] [2] [3] The calculator was used to solve problems with electrical power line transmission. [4]
Casio produced the first commercially available graphing calculator in 1985. Sharp produced its first graphing calculator in 1986, with Hewlett Packard following in 1988, and Texas Instruments in 1990. [5]
Some graphing calculators have a computer algebra system (CAS), which means that they are capable of producing symbolic results. These calculators can manipulate algebraic expressions, performing operations such as factor, expand, and simplify. In addition, they can give answers in exact form without numerical approximations. [6] Calculators that have a computer algebra system are called symbolic or CAS calculators.
Many graphing calculators can be attached to devices like electronic thermometers, pH gauges, weather instruments, decibel and light meters, accelerometers, and other sensors and therefore function as data loggers, as well as WiFi or other communication modules for monitoring, polling and interaction with the teacher. Student laboratory exercises with data from such devices enhances learning of math, especially statistics and mechanics. [7]
Since graphing calculators are typically user-programmable, they are also widely used for utilities and calculator gaming, with a sizable body of user-created game software on most popular platforms. [8] The ability to create games and utilities has spurred the creation of calculator application sites (e.g., Cemetech) which, in some cases, may offer programs created using calculators' assembly language. Even though handheld gaming devices fall in a similar price range, graphing calculators offer superior math programming capability for math based games. However, due to poor display resolution, slow processor speed and lack of a dedicated keyboard, they are mostly preferred only by high school students. [8]
For developers and advanced users, including researchers, analysts, and gamers, third-party software development involving firmware modifications—whether to enhance gaming performance or to exploit capabilities beyond those documented in official data sheets and programming languages—remains a contentious issue. Manufacturers and educational authorities express concern that such modifications may facilitate unfair calculator use during standardized high school and college examinations, where these devices are subject to strict regulations.
![]() | This section needs expansion. You can help by adding to it. (January 2025) |
There are many graphing calculators that do not require dedicated hardware, but run on a device in a web browser or as an app. Notable graphing calculators of this type include Desmos and GeoGebra. [9] [10]
![]() | This section needs to be updated.(September 2018) |
Attitudes towards graphing and other calculators in education have evolved over the years, and while some jurisdictions prohibit their use for classwork or exams, others permit or even require their usage, particularly for calculus and trigonometry classes.
Most graphing calculators, as well as some non-graphing scientific calculators and programmer's calculators can be programmed to automate complex and frequently used series of calculations and those inaccessible from the keyboard.
Programming is often performed on a computer and subsequently uploaded to the calculator. Common tools for this process include PC link cables and corresponding software for the specific calculator, configurable text editors or hex editors, and specialized programming environments supporting various languages on the computer side.
Earlier calculators used magnetic cards and similar media for program storage; however, increased onboard memory has made internal storage the prevailing method. Some modern calculators also support external memory cards.
Many graphing and scientific calculators will tokenize the program text, replacing textual programming elements with short numerical tokens. For example, take this line of TI-BASIC code: Disp [A]
. In a conventional programming language, this line of code would be nine characters long (eight not including a newline character). For a system as slow as a graphing calculator, this is too inefficient for an interpreted language. To increase program speed and coding efficiency, the above line of code would be only three characters. "Disp_" as a single character, "[A]" as a single character, and a newline character. This normally means that single byte chars will query the standard ASCII chart while two byte chars (the Disp_ for example) will build a graphical string of single byte characters but retain the two byte character in the program memory. Many graphical calculators work much like computers and use versions of 7-bit, 8-bit or 9-bit ASCII-derived character sets or even UTF-8 and Unicode. Many of them have a tool similar to the character map on Windows.
They also have BASIC like functions such as chr$, chr, char, asc, and so on, which sometimes may be more Pascal or C like. One example may be use of ord, as in Pascal, instead of the asc of many Basic variants, to return the code of a character, i.e. the position of the character in the collating sequence of the machine.
A cable and/or IrDA transceiver connecting the calculator to a computer make the process easier and expands other possibilities such as on-board spreadsheet, database, graphics, and word processing programs. The second option is being able to code the programs on board the calculator itself. This option is facilitated by the inclusion of full-screen text editors and other programming tools in the default feature set of the calculator or as optional items. Some calculators have QWERTY keyboards and others can be attached to an external keyboard which can be close to the size of a regular 102-key computer keyboard. Programming is a major use for the software and cables used to connect calculators to computers.
The most common programming languages used for calculators are similar to keystroke-macro languages and variants of BASIC. The latter can have a large feature set—approaching that of BASIC as found in computers—including character and string manipulation, advanced conditional and branching statements, sound, graphics, and more including, of course, the huge spectrum of mathematical, string, bit-manipulation, number base, I/O, and graphics functions built into the machine.
Languages for programming calculators fall into all of the main groups, i.e. machine code, low-level, mid-level, high-level languages for systems and application programming, scripting, macro, and glue languages, procedural, functional, imperative &. object-oriented programming can be achieved in some cases.
Most calculators capable to being connected to a computer can be programmed in assembly language and machine code, although on some calculators this is only possible through using exploits. The most common assembly and machine languages are for TMS9900, SH-3, Zilog Z80, and various Motorola chips (e.g. a modified 68000) which serve as the main processors of the machines although many (not all) are modified to some extent from their use elsewhere. Some manufacturers do not document and even mildly discourage the assembly language programming of their machines because they must be programmed in this way by putting together the program on the PC and then forcing it into the calculator by various improvised methods.
Other on-board programming languages include purpose-made languages, variants of Eiffel, Forth, and Lisp, and Command Script facilities which are similar in function to batch/shell programming and other glue languages on computers but generally not as full featured. Ports of other languages like BBC BASIC and development of on-board interpreters for Fortran, REXX, AWK, Perl, Unix shells (e.g., bash, zsh), other shells (DOS/Windows 9x, OS/2, and Windows NT family shells as well as the related 4DOS, 4NT and 4OS2 as well as DCL), COBOL, C, Python, Tcl, Pascal, Delphi, ALGOL, and other languages are at various levels of development.
Some calculators, especially those with other PDA-like functions have actual operating systems including the TI proprietary OS for its more recent machines, DOS, Windows CE, and rarely Windows NT 4.0 Embedded et seq, and Linux. Experiments with the TI-89, TI-92, TI-92 Plus and Voyage 200 machines show the possibility of installing some variants of other systems such as a chopped-down variant of CP/M-68K, an operating system which has been used for portable devices in the past.
Tools which allow for programming the calculators in C/C++ and possibly Fortran and assembly language are used on the computer side, such as HPGCC, TIGCC and others. Flash memory is another means of conveyance of information to and from the calculator.
The on-board BASIC variants in TI graphing calculators and the languages available on the HP-48 series can be used for rapid prototyping by developers, professors, and students, often when a computer is not close at hand.
Most graphing calculators have on-board spreadsheets which usually integrate with Microsoft Excel on the computer side. At this time, spreadsheets with macro and other automation facilities on the calculator side are not on the market. In some cases, the list, matrix, and data grid facilities can be combined with the native programming language of the calculator to have the effect of a macro and scripting enabled spreadsheet.
{{cite journal}}
: Cite journal requires |journal=
(help)Years ago, we barred calculator use from some classes and from parts of some tests. We no longer do so.