Microserver

Last updated
DOME P5020 Microserver
P5020 microserver.jpg
139mm x 55mm compute node
DOME T4240 Microserver prototype
Prototype T4240 microserver.JPG
T4240 revision 1 prototype board, running Fedora 20, 21 Jan 2015
DOME T4240 Microserver production version
Dome T4240ZMSv2.2 unlidded.jpg
T4240ZMS production version microserver, running Fedora 23, March 2017

A data center 64 bit microserver is a server class computer which is based on a system on a chip (SoC). The goal is to integrate all of the server motherboard functions onto a single microchip, except DRAM, boot FLASH and power circuits. [1] Thus, the main chip contains more than only compute cores, caches, memory interfaces and PCI controllers. It typically also contains SATA, networking, serial port and boot FLASH interfaces on the same chip. This eliminates support chips (and therefore area, power and cost) at the board level. Multiple microservers can be put together in a small package to construct dense data center (example: DOME MicroDataCenter).

Contents

History

The term "microserver" first appeared in the late 1990s and was popularized by a Palo Alto incubator; PicoStar [2] when incubating Cobalt Microservers. Microserver again appeared around 2010 and is commonly misunderstood to imply low performance. [3] Microservers first appeared in the embedded market, where due to cost and space these types of SoCs appeared before they did in general purpose computing. Indeed, recent research indicates that emerging scale-out services and popular datacenter workloads (e.g., as in CloudSuite [4] ) require a certain degree of single-thread performance (with out-of-order execution cores) which may be lower than those in conventional desktop processors but much higher than those in the embedded systems. [5]

A modern microserver typically offers medium-high performance at high packaging densities, allowing very small compute node form factors. This can result in high energy efficiency (operations per Watt), typically better than that of highest single-thread performance processors. [6]

One of the early microservers is the 32-bit SheevaPlug. There are plenty of consumer grade 32-bit microservers available, for instance the Banana Pi as seen on Comparison of single-board computers. Early 2015, even a 64-bit consumer grade microserver is announced. Mid 2017 consumer-grade 64-bit microservers started appear, for example the Raspberry-Pi3. [7] Data-Center-grade microservers need to be 64-bit and run server class operating systems such as RHEL or SUSE.

Commercialization

In 2015 microservers, sometimes also (confusingly) called 'scale-out servers' or even 'scale-in servers' are getting plenty of attention in the press. [15]

See also

Related Research Articles

<span class="mw-page-title-main">AMD</span> American multinational semiconductor company

Advanced Micro Devices, Inc. (AMD) is an American multinational corporation and semiconductor company based in Santa Clara, California, that develops computer processors and related technologies for business and consumer markets.

<span class="mw-page-title-main">Itanium</span> Family of 64-bit Intel microprocessors

Itanium is a discontinued family of 64-bit Intel microprocessors that implement the Intel Itanium architecture. The Itanium architecture originated at Hewlett-Packard (HP), and was later jointly developed by HP and Intel. Launched in June 2001, Intel initially marketed the processors for enterprise servers and high-performance computing systems. In the concept phase, engineers said "we could run circles around PowerPC...we could kill the x86." Early predictions were that IA-64 would expand to the lower-end servers, supplanting Xeon, and eventually penetrate into the personal computers, eventually to supplant reduced instruction set computing (RISC) and complex instruction set computing (CISC) architectures for all general-purpose applications.

<span class="mw-page-title-main">Microprocessor</span> Computer processor contained on an integrated-circuit chip

A microprocessor is a computer processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, and control circuitry required to perform the functions of a computer's central processing unit (CPU). The IC is capable of interpreting and executing program instructions and performing arithmetic operations. The microprocessor is a multipurpose, clock-driven, register-based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic, and operate on numbers and symbols represented in the binary number system.

ARM is a family of RISC instruction set architectures (ISAs) for computer processors. Arm Ltd. develops the ISAs and licenses them to other companies, who build the physical devices that use the instruction set. It also designs and licenses cores that implement these ISAs.

XScale is a microarchitecture for central processing units initially designed by Intel implementing the ARM architecture instruction set. XScale comprises several distinct families: IXP, IXC, IOP, PXA and CE, with some later models designed as system-on-a-chip (SoC). Intel sold the PXA family to Marvell Technology Group in June 2006. Marvell then extended the brand to include processors with other microarchitectures, like Arm's Cortex.

<span class="mw-page-title-main">64-bit computing</span> Computer architecture bit width

In computer architecture, 64-bit integers, memory addresses, or other data units are those that are 64 bits wide. Also, 64-bit central processing units (CPU) and arithmetic logic units (ALU) are those that are based on processor registers, address buses, or data buses of that size. A computer that uses such a processor is a 64-bit computer.

<span class="mw-page-title-main">Hyper-threading</span> Proprietary simultaneous multithreading implementation by Intel

Hyper-threading is Intel's proprietary simultaneous multithreading (SMT) implementation used to improve parallelization of computations performed on x86 microprocessors. It was introduced on Xeon server processors in February 2002 and on Pentium 4 desktop processors in November 2002. Since then, Intel has included this technology in Itanium, Atom, and Core 'i' Series CPUs, among others.

<span class="mw-page-title-main">Multi-core processor</span> Microprocessor with more than one processing unit

A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques. Manufacturers typically integrate the cores onto a single integrated circuit die or onto multiple dies in a single chip package. The microprocessors currently used in almost all personal computers are multi-core.

Tilera Corporation was a fabless semiconductor company focusing on manycore embedded processor design. The company shipped multiple processors in the TILE64, TILEPro64, and TILE-Gx lines.

<span class="mw-page-title-main">Intel Atom</span> Microprocessor brand name by Intel

Intel Atom is a line of IA-32 and x86-64 instruction set ultra-low-voltage processors by Intel Corporation designed to reduce electric consumption and power dissipation in comparison with ordinary processors of the Intel Core series. Atom is mainly used in netbooks, nettops, embedded applications ranging from health care to advanced robotics, mobile Internet devices (MIDs) and phones. The line was originally designed in 45 nm complementary metal–oxide–semiconductor (CMOS) technology and subsequent models, codenamed Cedar, used a 32 nm process.

Bonnell is a CPU microarchitecture used by Intel Atom processors which can execute up to two instructions per cycle. Like many other x86 microprocessors, it translates x86 instructions into simpler internal operations prior to execution. The majority of instructions produce one micro-op when translated, with around 4% of instructions used in typical programs producing multiple micro-ops. The number of instructions that produce more than one micro-op is significantly fewer than the P6 and NetBurst microarchitectures. In the Bonnell microarchitecture, internal micro-ops can contain both a memory load and a memory store in connection with an ALU operation, thus being more similar to the x86 level and more powerful than the micro-ops used in previous designs. This enables relatively good performance with only two integer ALUs, and without any instruction reordering, speculative execution or register renaming. A side effect of having no speculative execution is invulnerability against Meltdown and Spectre.

SeaMicro, Inc. was a subsidiary of AMD that specialized in the ultra-dense computer server industry. It ceased operations on 16 April 2015.

Heterogeneous computing refers to systems that use more than one kind of processor or core. These systems gain performance or energy efficiency not just by adding the same type of processors, but by adding dissimilar coprocessors, usually incorporating specialized processing capabilities to handle particular tasks.

<span class="mw-page-title-main">DOME MicroDataCenter</span>

A microDataCenter contains compute, storage, power, cooling and networking in a very small volume, sometimes also called a "DataCenter-in-a-box". The term has been used to describe various incarnations of this idea over the past 20 years. Late 2017 a very tightly integrated version was shown at SuperComputing conference 2017: the DOME microDataCenter. Key features are its hot-watercooling, fully solid-state and being built with commodity components and standards only.

<span class="mw-page-title-main">Epyc</span> AMD brand for server microprocessors

Epyc is a brand of multi-core x86-64 microprocessors designed and sold by AMD, based on the company's Zen microarchitecture. Introduced in June 2017, they are specifically targeted for the server and embedded system markets.

<span class="mw-page-title-main">Intel Xe</span> Intel GPU architecture

Intel Xe, earlier known unofficially as Gen12, is a GPU architecture developed by Intel.

<span class="mw-page-title-main">Ampere Computing</span> American fabless semiconductor company

Ampere Computing LLC is an American fabless semiconductor company based in Santa Clara, California that develops processors for servers operating in large scale environments. Ampere also has offices in: Portland, Oregon; Taipei, Taiwan; Raleigh, North Carolina; Bangalore, India; Warsaw, Poland; and Ho Chi Minh City, Vietnam.

AWS Graviton is a family of 64-bit ARM-based CPUs designed by the Amazon Web Services (AWS) subsidiary Annapurna Labs. The processor family is distinguished by its lower energy use relative to x86-64, static clock rates, and omission of simultaneous multithreading. It was designed to be tightly integrated with AWS servers and datacenters, and is not sold outside Amazon.

The ARM Neoverse is a group of 64-bit ARM processor cores licensed by Arm Holdings. The cores are intended for datacenter, edge computing, and high-performance computing use. The group consists of ARM Neoverse V-Series, ARM Neoverse N-Series, and ARM Neoverse E-Series.

References

  1. "Dual function heat-spreading and performance of the IBM / Astron DOME 64-bit μServer demonstrator", R. Luijten, A. Doering and S. Paredes, ICICDT, May 2014, Austin, TX
  2. "Trademark search 'microserver' here;" http://tmsearch.uspto.gov/
  3. "FAWN: A Fast Array of Wimpy Nodes". D. Andersen et al. Proc. 22nd ACM Symposium on Operating Systems Principles (SOSP 2009), Big Sky, MT. October 2009.
  4. "The CloudSuite". http://parsa.epfl.ch/cloudsuite.
  5. "Clearing the Clouds". M. Ferdman et al. Proc. 17th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2012.
  6. "Energy Efficient MicroServer based on a 12-core 1.8GHz 188K Coremark 28nm Bulk CMOS 64-bit SoC for Big-Data Applications with 159 GB/s/liter Memory Bandwidth System Density.", R. Luijten, D. Pham, R. Clauberg, H. Nguyen, M. Cossale, M. Pandya, ISSCC 2015, Feb 2015, San Francisco
  7. "Buy a Raspberry Pi 3 Model B".
  8. "VIA Nano finds itself in a curious place: Dell 'Fortuna' servers - PC Perspective". 20 May 2009.
  9. "SeaMicro Announces SM10000 Server with 512 Atom CPUs and Low Power Consumption".
  10. "SeaMicro pushes 'Atom smasher' to 768 cores in 10U box". The Register .
  11. SeaMicro SM10000-XE homepage
  12. ARM server developer Calxeda shuts down
  13. HP Moonshot System homepage
  14. Kaleao KMAX product overview
  15. ARM Challenging Intel in the Server Market: An Overview