VIA Nano

Last updated
VIA Nano
VIA Nano Chip Image (top).jpg
General information
Marketed by VIA Technologies
Designed by Centaur Technology
Common manufacturers
Performance
FSB speeds533 MHz to 1066 MHz
Cache
L1 cache 64 KiB instruction + 64 KiB data per core
L2 cache1 MiB per core, exclusive
Architecture and classification
Technology node 40 nm to 65 nm
Microarchitecture VIA Isaiah
Instruction set IA-32, x86-64
Extensions
Physical specifications
Cores
  • 1, 2, 4
Package
Products, models, variants
Core name
  • Isaiah (CN)
History
Predecessor VIA C7
VIA Nano 2 Logo VIA Nano X2 Processor - Logo (5306143882).jpg
VIA Nano 2 Logo

The VIA Nano (formerly code-named VIA Isaiah) is a 64-bit CPU for personal computers. The VIA Nano was released by VIA Technologies in 2008 after five years of development [1] by its CPU division, Centaur Technology. This new Isaiah 64-bit architecture was designed from scratch, unveiled on 24 January 2008, [2] [3] [4] [5] and launched on 29 May, including low-voltage variants and the Nano brand name. [6] The processor supports a number of VIA-specific x86 extensions designed to boost efficiency in low-power appliances.

Contents

History

Unlike Intel and AMD, VIA uses two distinct development code names for each of its CPU cores. In this case, the codename 'CN' was used in the United States by Centaur Technology. Biblical names are used as codes by VIA in Taiwan, and Isaiah was the choice for this particular processor and architecture. It is expected that the VIA Isaiah will be twice as fast in integer performance and four times as fast in floating-point performance as the previous-generation VIA Esther at an equivalent clock speed. Power consumption is also expected to be on par with the previous-generation VIA CPUs, with thermal design power ranging from 5 W to 25 W. [7] Being a completely new design, the Isaiah architecture was built with support for features like the x86-64 instruction set and x86 virtualization which were unavailable on its predecessors, the VIA C7 line, while retaining their encryption extensions. Several independent tests showed that the VIA Nano performs better than the single-core Intel Atom across a variety of workloads. [8] [9] [10] In a 2008 Ars Technica test, a VIA Nano gained significant performance in memory subsystem after its CPUID changed to Intel, hinting at the possibility that the benchmark software only checks the CPUID instead of the actual features supported by the CPU to choose a code path. The benchmark software used had been released before the release of VIA Nano. [11]

On November 3, 2009, VIA launched the Nano 3000 series. VIA claims that these models can offer a 20% performance boost and 20% more energy efficiency than the Nano 1000 and 2000 series. [12] Benchmarks run by VIA claim that a 1.6 GHz 3000-series Nano can outperform the ageing Intel Atom N270 by about 40–54%. [13] The 3000 series adds the SSE4 SIMD instruction set extensions, which were first introduced with 45 nm revisions of the Intel Core 2 architecture.

On November 11, 2011, VIA released the VIA Nano X2 Dual-Core Processor with their first ever dual core pico-itx mainboard. The VIA Nano X2 is built on a 40 nm process and supports the SSE4 SIMD instruction set extensions, critical to modern floating point dependent applications. [14] Via claims 30% higher performance in comparison to Intel's Atom with a 50% higher clock. [15]

The Zhaoxin joint venture processors, released from 2014, are based on the VIA Nano series.

Features

VIA Isaiah floorplan VIA Isaiah Architecture block diagram.jpg
VIA Isaiah floorplan

Architecture overview

VIA Isaiah Architecture die floor-plan VIA Isaiah Architecture die plot.jpg
VIA Isaiah Architecture die floor-plan
Nano X2 microarchitecture. VIA Nano X2 Processor - Architecture.jpg
Nano X2 microarchitecture.

See also

Related Research Articles

<span class="mw-page-title-main">Athlon</span> Brand of microprocessors by AMD

Athlon is the brand name applied to a series of x86-compatible microprocessors designed and manufactured by AMD. The original Athlon was the first seventh-generation x86 processor and the first desktop processor to reach speeds of one gigahertz (GHz). It made its debut as AMD's high-end processor brand on June 23, 1999. Over the years AMD has used the Athlon name with the 64-bit Athlon 64 architecture, the Athlon II, and Accelerated Processing Unit (APU) chips targeting the Socket AM1 desktop SoC architecture, and Socket AM4 Zen (microarchitecture). The modern Zen-based Athlon with a Radeon Graphics processor was introduced in 2019 as AMD's highest-performance entry-level processor.

x86 Family of instruction set architectures

x86 is a family of complex instruction set computer (CISC) instruction set architectures initially developed by Intel based on the 8086 microprocessor and its 8-bit-external-bus variant, the 8088. The 8086 was introduced in 1978 as a fully 16-bit extension of 8-bit Intel's 8080 microprocessor, with memory segmentation as a solution for addressing more memory than can be covered by a plain 16-bit address. The term "x86" came into being because the names of several successors to Intel's 8086 processor end in "86", including the 80186, 80286, 80386 and 80486. Colloquially, their names were "186", "286", "386" and "486".

In computing, Streaming SIMD Extensions (SSE) is a single instruction, multiple data (SIMD) instruction set extension to the x86 architecture, designed by Intel and introduced in 1999 in their Pentium III series of central processing units (CPUs) shortly after the appearance of Advanced Micro Devices (AMD's) 3DNow!. SSE contains 70 new instructions, most of which work on single precision floating-point data. SIMD instructions can greatly increase performance when exactly the same operations are to be performed on multiple data objects. Typical applications are digital signal processing and graphics processing.

x86-64 64-bit version of x86 architecture

x86-64 is a 64-bit version of the x86 instruction set, first announced in 1999. It introduced two new modes of operation, 64-bit mode and compatibility mode, along with a new 4-level paging mode.

SSE2 is one of the Intel SIMD processor supplementary instruction sets introduced by Intel with the initial version of the Pentium 4 in 2000. SSE2 instructions allow the use of XMM (SIMD) registers on x86 instruction set architecture processors. These registers can load up to 128 bits of data and perform instructions, such as vector addition and multiplication, simultaneously.

<span class="mw-page-title-main">P6 (microarchitecture)</span> Intel processor microarchitecture

The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was planned to be succeeded by the NetBurst microarchitecture used by the Pentium 4 in 2000, but was revived for the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6.

x87 is a floating-point-related subset of the x86 architecture instruction set. It originated as an extension of the 8086 instruction set in the form of optional floating-point coprocessors that work in tandem with corresponding x86 CPUs. These microchips have names ending in "87". This is also known as the NPX. Like other extensions to the basic instruction set, x87 instructions are not strictly needed to construct working programs, but provide hardware and microcode implementations of common numerical tasks, allowing these tasks to be performed much faster than corresponding machine code routines can. The x87 instruction set includes instructions for basic floating-point operations such as addition, subtraction and comparison, but also for more complex numerical operations, such as the computation of the tangent function and its inverse, for example.

<span class="mw-page-title-main">Yonah (microprocessor)</span> Code name of Intels first generation 65 nm process CPU cores

Yonah is the code name of Intel's first generation 65 nm process CPU cores, based on cores of the earlier Banias / Dothan Pentium M microarchitecture. Yonah CPU cores were used within Intel's Core Solo and Core Duo mobile microprocessor products. SIMD performance on Yonah improved through the addition of SSE3 instructions and improvements to SSE and SSE2 implementations; integer performance decreased slightly due to higher latency cache. Additionally, Yonah included support for the NX bit.

<span class="mw-page-title-main">Centaur Technology</span> American electronics company

Centaur Technology was an x86 CPU design company started in 1995 and subsequently a wholly owned subsidiary of VIA Technologies. In 2015, the documentary Rise of the Centaur covered the early history of the company. The company was broken up in 2021.

Supplemental Streaming SIMD Extensions 3 is a SIMD instruction set created by Intel and is the fourth iteration of the SSE technology.

<span class="mw-page-title-main">Pentium</span> Brand of discontinued microprocessors produced by Intel

Pentium is a discontinued series of x86 architecture-compatible microprocessors produced by Intel. The original Pentium was first released on March 22, 1993. The name "Pentium" is originally derived from the Greek word pente (πεντε), meaning "five", a reference to the prior numeric naming convention of Intel's 80x86 processors (8086–80486), with the Latin ending -ium since the processor would otherwise have been named 80586 using that convention.

SSE4 is a SIMD CPU instruction set used in the Intel Core microarchitecture and AMD K10 (K8L). It was announced on September 27, 2006, at the Fall 2006 Intel Developer Forum, with vague details in a white paper; more precise details of 47 instructions became available at the Spring 2007 Intel Developer Forum in Beijing, in the presentation. SSE4 extended the SSE3 instruction set which was released in early 2004. All software using previous Intel SIMD instructions are compatible with modern microprocessors supporting SSE4 instructions. All existing software continues to run correctly without modification on microprocessors that incorporate SSE4, as well as in the presence of existing and new applications that incorporate SSE4.

<span class="mw-page-title-main">Nehalem (microarchitecture)</span> CPU microarchitecture by Intel

Nehalem is the codename for Intel's 45 nm microarchitecture released in November 2008. It was used in the first generation of the Intel Core i5 and i7 processors, and succeeds the older Core microarchitecture used on Core 2 processors. The term "Nehalem" comes from the Nehalem River.

<span class="mw-page-title-main">Intel Atom</span> Microprocessor brand name by Intel

Intel Atom is a line of IA-32 and x86-64 instruction set ultra-low-voltage processors by Intel Corporation designed to reduce electric consumption and power dissipation in comparison with ordinary processors of the Intel Core series. Atom is mainly used in netbooks, nettops, embedded applications ranging from health care to advanced robotics, mobile Internet devices (MIDs) and phones. The line was originally designed in 45 nm complementary metal–oxide–semiconductor (CMOS) technology and subsequent models, codenamed Cedar, used a 32 nm process.

Advanced Vector Extensions are SIMD extensions to the x86 instruction set architecture for microprocessors from Intel and Advanced Micro Devices (AMD). They were proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridge microarchitecture shipping in Q1 2011 and later by AMD with the Bulldozer microarchitecture shipping in Q4 2011. AVX provides new features, new instructions, and a new coding scheme.

References

  1. "VIA to launch new processor architecture in 1Q08" . DigiTimes. Archived from the original on 3 December 2008. Retrieved 25 July 2007.
  2. Stokes, Jon (23 January 2008). "Isaiah revealed: VIA's new low-power architecture". Ars Technica. Archived from the original on 27 January 2008. Retrieved 24 January 2008.
  3. Bennett, Kyle (24 January 2008). "VIA's New Centaur Designed Isaiah CPU Architecture". [H]ard|OCP. Archived from the original on 19 July 2011. Retrieved 24 January 2008.
  4. "Via launches 64-bit architecture". LinuxDevices.com. 23 January 2008. Archived from the original on 2013-01-03. Retrieved 24 January 2008.
  5. Wasson, Scott (24 January 2008). "A look at VIA's next-gen Isaiah x86 CPU architecture". The Tech Report. Archived from the original on 26 January 2008. Retrieved 24 January 2008.
  6. "VIA Launches VIA Nano Processor Family" (Press release). VIA. 29 May 2008. Archived from the original on 3 February 2019. Retrieved 29 May 2008.
  7. "VIA Isaiah Architecture Introduction" (PDF). VIA. 23 January 2008. Archived from the original (PDF) on 14 June 2011. Retrieved 28 May 2008.
  8. Bennett, Kyle (29 July 2008). "Intel Atom vs. VIA Nano". [H]ard|OCP. Archived from the original on 19 February 2012.
  9. Chiappetta, Marco (29 July 2008). "VIA Nano L2100 vs. Intel Atom 230: Head to Head". HotHardware. Archived from the original on 22 July 2011. Retrieved 18 January 2009.
  10. Shrout, Ryan (29 July 2008). "VIA Nano and Intel Atom Review – Battle of the Tiny CPUs". PC Perspective. Archived from the original on 13 January 2010. Retrieved 18 January 2009.
  11. Hruska, Joel (29 July 2008). "Low-end grudge match: Nano vs. Atom". Ars Technica. Archived from the original on 20 January 2012. Retrieved 15 June 2017.
  12. "VIA Introduces New VIA Nano 3000 Series Processors" (Press release). VIA. 3 November 2009. Archived from the original on 22 January 2013.
  13. "VIA Nano Processor". VIA. Archived from the original on 2008-05-30. Retrieved 2008-05-30.
  14. "VIA Releases New Nano X2 Dual-Core Processor". Tom's Hardware. Archived from the original on 2022-01-25. Retrieved 2013-10-15.
  15. "VIA Nano x2 Processor SPECfp2000 Benchmarks". VIA. Archived from the original on 2014-02-07.
  16. "The VIA Isaiah Architecture - VIA Technologies, Inc". 2013-05-29. Archived from the original on 2013-05-29. Retrieved 2020-04-10.

Press