VIA Eden

Last updated
Eden ESP5000 533 MHz prozessor KL VIA Eden ESP5000.jpg
Eden ESP5000 533 MHz prozessor
Eden-N 800 MHz processor, next to capacitors and VIA CLE266 northbridge. Its size is only 1.5x1.5cm (heatsink removed). CPU VIA EDEN ESP N8000.jpg
Eden-N 800 MHz processor, next to capacitors and VIA CLE266 northbridge. Its size is only 1.5×1.5cm (heatsink removed).

VIA Eden is a name of a variant of VIA's C3/C7 x86 processors, designed to be used in embedded devices. They have smaller package sizes, lower power consumption, and somewhat lower computing performance than their C equivalents, due to reduced clock rates. They are often used in EPIA mini-ITX, nano-ITX, and Pico-ITX motherboards. In addition to x86 instruction decoding, the processors have a second undocumented Alternate Instruction Set.

Contents

The Eden is available in four main versions:

NameCore Clock speed Package FSB
Eden ESPSamuel 2 and Nehemiah cores300 MHz–1.0 GHzEBGA 35mm×35mm66/100/133 MHz
Eden-NNehemiah core533 MHz–1.0 GHzNanoBGA 15mm×15mm133 MHz
EdenEsther core400 MHz–1.2 GHzNanoBGA2 21mm×21mm400 MT/s FSB
Eden ULVEsther core500 MHz–1.5 GHzNanoBGA2 21mm×21mm400 MT/s FSB

The Eden ULV 500 MHz was the first variant to achieve a TDP of 1W . [1]

See also

Related Research Articles

i386 32-bit microprocessor by Intel

The Intel 386, originally released as 80386 and later renamed i386, is a 32-bit microprocessor introduced in 1985. The first versions had 275,000 transistors and were the CPU of many workstations and high-end personal computers of the time. As the original implementation of the 32-bit extension of the 80286 architecture, the i386 instruction set, programming model, and binary encodings are still the common denominator for all 32-bit x86 processors, which is termed the i386 architecture, x86, or IA-32, depending on context.

<span class="mw-page-title-main">Instructions per second</span> Measure of a computers processing speed

Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic. Many reported IPS values have represented "peak" execution rates on artificial instruction sequences with few branches and no cache contention, whereas realistic workloads typically lead to significantly lower IPS values. Memory hierarchy also greatly affects processor performance, an issue barely considered in IPS calculations. Because of these problems, synthetic benchmarks such as Dhrystone are now generally used to estimate computer performance in commonly used applications, and raw IPS has fallen into disuse.

<span class="mw-page-title-main">Celeron</span> Line of microprocessors made by Intel

Celeron was a series of low-end IA-32 and x86-64 computer microprocessor models targeted at low-cost personal computers, manufactured by Intel. The first Celeron-branded CPU was introduced in April 15, 1998, and was based on the Pentium II.

<span class="mw-page-title-main">Pentium M</span> Family of Intel microprocessors

The Pentium M is a family of mobile 32-bit single-core x86 microprocessors introduced in March 2003 and forming a part of the Intel Carmel notebook platform under the then new Centrino brand. The Pentium M processors had a maximum thermal design power (TDP) of 5–27 W depending on the model, and were intended for use in laptops. They evolved from the core of the last Pentium III–branded CPU by adding the front-side bus (FSB) interface of Pentium 4, an improved instruction decoding and issuing front end, improved branch prediction, SSE2 support, and a much larger cache. The first Pentium M–branded CPU, code-named Banias, was followed by Dothan. The Pentium M line was removed from the official price lists in July 2009, when the Pentium M-branded processors were succeeded by the Core-branded dual-core mobile Yonah CPU with a modified microarchitecture. It replaced the Mobile Pentium 4 processor, which suffered from power consumption and heat problems.

<span class="mw-page-title-main">VIA Technologies</span> Taiwanese Chipsets manufacturer

VIA Technologies Inc., is a Taiwanese manufacturer of integrated circuits, mainly motherboard chipsets, CPUs, and memory. It was the world's largest independent manufacturer of motherboard chipsets. As a fabless semiconductor company, VIA conducts research and development of its chipsets in-house, then subcontracts the actual (silicon) manufacturing to third-party merchant foundries such as TSMC.

<span class="mw-page-title-main">VIA C3</span> Family of x86 central processing units for personal computers

The VIA C3 is a family of x86 central processing units for personal computers designed by Centaur Technology and sold by VIA Technologies. The different CPU cores are built following the design methodology of Centaur Technology.

<span class="mw-page-title-main">AMD K6-III</span> Microprocessor series by AMD

The K6-III was an x86 microprocessor line manufactured by AMD that launched on February 22, 1999. The launch consisted of both 400 and 450 MHz models and was based on the preceding K6-2 architecture. Its improved 256 KB on-chip L2 cache gave it significant improvements in system performance over its predecessor the K6-2. The K6-III was the last processor officially released for desktop Socket 7 systems, however later mobile K6-III+ and K6-2+ processors could be run unofficially in certain socket 7 motherboards if an updated BIOS was made available for a given board. The Pentium III processor from Intel launched 6 days later.

<span class="mw-page-title-main">Mini-ITX</span> 17 × 17 cm motherboard

Mini-ITX is a 170 mm × 170 mm motherboard form-factor, developed by VIA Technologies in 2001. They are commonly used in small-configured computer systems. Originally, they were a niche product, designed for fan-less cooling with a low power consumption architecture, which made them useful for home theater PC systems, where fan noise can detract from the cinema experience. The four mounting holes in a Mini-ITX board line up with four of the holes in ATX-specification motherboards, and the locations of the backplate and expansion slot are the same. Mini-ITX boards can therefore often be used in cases designed for ATX, micro-ATX and other ATX variants if desired.

<span class="mw-page-title-main">EPIA</span> Computer motherboard form factor

VIA EPIA is a series of mini-ITX, em-ITX, nano-ITX, pico-ITX and pico-ITXe motherboards with integrated VIA processors. They are small and consume less power than computers of comparable capabilities.

<span class="mw-page-title-main">VIA C7</span> Central processing unit designed by Centaur Technology and sold by VIA Technologies

The VIA C7 is an x86 central processing unit designed by Centaur Technology and sold by VIA Technologies.

<span class="mw-page-title-main">P6 (microarchitecture)</span> Intel processor microarchitecture

The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was planned to be succeeded by the NetBurst microarchitecture used by the Pentium 4 in 2000, but was revived for the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6.

x87 is a floating-point-related subset of the x86 architecture instruction set. It originated as an extension of the 8086 instruction set in the form of optional floating-point coprocessors that worked in tandem with corresponding x86 CPUs. These microchips had names ending in "87". This was also known as the NPX. Like other extensions to the basic instruction set, x87 instructions are not strictly needed to construct working programs, but provide hardware and microcode implementations of common numerical tasks, allowing these tasks to be performed much faster than corresponding machine code routines can. The x87 instruction set includes instructions for basic floating-point operations such as addition, subtraction and comparison, but also for more complex numerical operations, such as the computation of the tangent function and its inverse, for example.

<span class="mw-page-title-main">VIA CoreFusion</span>

VIA CoreFusion is a line of low power x86 processors manufactured by VIA starting in 2003. The Corefusion integrates the Northbridge, graphics processing unit and a V-Link Interface

<span class="mw-page-title-main">Pico-ITX</span>

In computer design, Pico-ITX is a PC motherboard form factor announced by VIA Technologies in January 2007 and demonstrated later the same year at CeBIT. The formfactor was transferred over to SFF-SIG in 2008. The Pico-ITX form factor specifications call for the board to be 10 × 7.2 cm (3.9 × 2.8 in), which is half the area of Nano-ITX.

<span class="mw-page-title-main">Cyrix III</span> 2000 line of x86-compatible microprocessors

Cyrix III is an x86-compatible Socket 370 CPU. VIA Technologies launched the processor in February 2000. VIA had purchased both Centaur Technology and Cyrix. Cyrix III was to be based upon a core from one of the two companies.

<span class="mw-page-title-main">VIA Nano</span>

The VIA Nano is a 64-bit CPU for personal computers. The VIA Nano was released by VIA Technologies in 2008 after five years of development by its CPU division, Centaur Technology. This new Isaiah 64-bit architecture was designed from scratch, unveiled on 24 January 2008, and launched on 29 May, including low-voltage variants and the Nano brand name. The processor supports a number of VIA-specific x86 extensions designed to boost efficiency in low-power appliances.

<span class="mw-page-title-main">Intel Atom</span> Microprocessor brand name by Intel

Intel Atom is a line of IA-32 and x86-64 instruction set ultra-low-voltage processors by Intel Corporation designed to reduce electric consumption and power dissipation in comparison with ordinary processors of the Intel Core series. Atom is mainly used in netbooks, nettops, embedded applications ranging from health care to advanced robotics, mobile Internet devices (MIDs) and phones. The line was originally designed in 45 nm complementary metal–oxide–semiconductor (CMOS) technology and subsequent models, codenamed Cedar, used a 32 nm process.

Bonnell is a CPU microarchitecture used by Intel Atom processors which can execute up to two instructions per cycle. Like many other x86 microprocessors, it translates x86 instructions into simpler internal operations prior to execution. The majority of instructions produce one micro-op when translated, with around 4% of instructions used in typical programs producing multiple micro-ops. The number of instructions that produce more than one micro-op is significantly fewer than the P6 and NetBurst microarchitectures. In the Bonnell microarchitecture, internal micro-ops can contain both a memory load and a memory store in connection with an ALU operation, thus being more similar to the x86 level and more powerful than the micro-ops used in previous designs. This enables relatively good performance with only two integer ALUs, and without any instruction reordering, speculative execution or register renaming. A side effect of having no speculative execution is invulnerability against Meltdown and Spectre.

References