Launched | September 20, 2022 |
---|---|
Designed by | Nvidia |
Manufactured by | |
Fabrication process | TSMC N4 |
Product Series | |
Server/datacenter |
|
Specifications | |
L1 cache | 256 KB (per SM) |
L2 cache | 50 MB |
Memory support | HBM3 |
PCIe support | PCI Express 5.0 |
Media Engine | |
Encoder(s) supported | NVENC |
History | |
Predecessor | Ampere |
Variant | Ada Lovelace (consumer and professional) |
Successor | Blackwell |
Hopper is a graphics processing unit (GPU) microarchitecture developed by Nvidia. It is designed for datacenters and is used alongside the Lovelace microarchitecture. It is the latest generation of the line of products formerly branded as Nvidia Tesla, now Nvidia Data Centre GPUs.
Named for computer scientist and United States Navy rear admiral Grace Hopper, the Hopper architecture was leaked in November 2019 and officially revealed in March 2022. It improves upon its predecessors, the Turing and Ampere microarchitectures, featuring a new streaming multiprocessor, a faster memory subsystem, and a transformer acceleration engine.
The Nvidia Hopper H100 GPU is implemented using the TSMC N4 process with 80 billion transistors. It consists of up to 144 streaming multiprocessors. [1] Due to the increased memory bandwidth provided by the SXM5 socket, the Nvidia Hopper H100 offers better performance when used in an SXM5 configuration than in the typical PCIe socket. [2]
The streaming multiprocessors for Hopper improve upon the Turing and Ampere microarchitectures, although the maximum number of concurrent warps per streaming multiprocessor (SM) remains the same between the Ampere and Hopper architectures, 64. [3] The Hopper architecture provides a Tensor Memory Accelerator (TMA), which supports bidirectional asynchronous memory transfer between shared memory and global memory. [4] Under TMA, applications may transfer up to 5D tensors. When writing from shared memory to global memory, elementwise reduction and bitwise operators may be used, avoiding registers and SM instructions while enabling users to write warp specialized codes. TMA is exposed through cuda::memcpy_async
[5]
When parallelizing applications, developers can use thread block clusters. Thread blocks may perform atomics in the shared memory of other thread blocks within its cluster, otherwise known as distributed shared memory. Distributed shared memory may be used by an SM simultaneously with L2 cache; when used to communicate data between SMs, this can utilize the combined bandwidth of distributed shared memory and L2. The maximum portable cluster size is 8, although the Nvidia Hopper H100 can support a cluster size of 16 by using the cudaFuncAttributeNonPortableClusterSizeAllowed
function, potentially at the cost of reduced number of active blocks. [6] With L2 multicasting and distributed shared memory, the required bandwidth for dynamic random-access memory read and writes is reduced. [7]
Hopper features improved single-precision floating-point format (FP32) throughput with twice as many FP32 operations per cycle per SM than its predecessor. Additionally, the Hopper architecture adds support for new instructions, including the Smith–Waterman algorithm. [6] Like Ampere, TensorFloat-32 (TF-32) arithmetic is supported. The mapping pattern for both architectures is identical. [8]
The Nvidia Hopper H100 supports HBM3 and HBM2e memory up to 80 GB; the HBM3 memory system supports 3 TB/s, an increase of 50% over the Nvidia Ampere A100's 2 TB/s. Across the architecture, the L2 cache capacity and bandwidth were increased. [9]
Hopper allows CUDA compute kernels to utilize automatic inline compression, including in individual memory allocation, which allows accessing memory at higher bandwidth. This feature does not increase the amount of memory available to the application, because the data (and thus its compressibility) may be changed at any time. The compressor will automatically choose between several compression algorithms. [9]
The Nvidia Hopper H100 increases the capacity of the combined L1 cache, texture cache, and shared memory to 256 KB. Like its predecessors, it combines L1 and texture caches into a unified cache designed to be a coalescing buffer. The attribute cudaFuncAttributePreferredSharedMemoryCarveout
may be used to define the carveout of the L1 cache. Hopper introduces enhancements to NVLink through a new generation with faster overall communication bandwidth. [10]
Some CUDA applications may experience interference when performing fence or flush operations due to memory ordering. Because the GPU cannot know which writes are guaranteed and which are visible by chance timing, it may wait on unnecessary memory operations, thus slowing down fence or flush operations. For example, when a kernel performs computations in GPU memory and a parallel kernel performs communications with a peer, the local kernel will flush its writes, resulting in slower NVLink or PCIe writes. In the Hopper architecture, the GPU can reduce the net cast through a fence operation. [11]
The Hopper architecture math application programming interface (API) exposes functions in the SM such as __viaddmin_s16x2_relu
, which performs the per-halfword . In the Smith–Waterman algorithm, __vimax3_s16x2_relu
can be used, a three-way min or max followed by a clamp to zero. [12] Similarly, Hopper speeds up implementations of the Needleman–Wunsch algorithm. [13]
The Hopper architecture was the first Nvidia architecture to implement the transformer engine [14] . The transformer engine accelerates computations by dynamically reducing them from higher numerical precisions (i.e., FP16) to lower precisions that are faster to perform (i.e., FP8) when the loss in precision is deemed acceptable [14] . The transformer engine is also capable of dynamically allocating bits in the chosen precision to either the mantissa or exponent at runtime to maximize precision [15] .
The SXM5 form factor H100 has a thermal design power (TDP) of 700 watts. With regards to its asynchrony, the Hopper architecture may attain high degrees of utilization and thus may have a better performance-per-watt. [16]
Designed by | Nvidia |
---|---|
Manufactured by | |
Fabrication process | TSMC 4N |
Codename(s) | Grace Hopper |
Specifications | |
Compute | GPU: 132 Hopper SMs CPU: 72 Neoverse V2 cores |
Shader clock rate | 1980 MHz |
Memory support | GPU: 96 GB HBM3 or 144 GB HBM3e CPU: 480 GB LPDDR5X |
The GH200 combines a Hopper-based H100 GPU with a Grace-based 72-core CPU on a single module. The total power draw of the module is up to 1000 W. CPU and GPU are connected via NVLink, which provides memory coherence between CPU and GPU memory. [17]
In November 2019, a well-known Twitter account posted a tweet revealing that the next architecture after Ampere would be called Hopper, named after computer scientist and United States Navy rear admiral Grace Hopper, one of the first programmers of the Harvard Mark I. The account stated that Hopper would be based on a multi-chip module design, which would result in a yield gain with lower wastage. [18]
During the 2022 Nvidia GTC, Nvidia officially announced Hopper. [19] By 2023, during the AI boom, H100s were in great demand. Larry Ellison of Oracle Corporation said that year that at a dinner with Nvidia CEO Jensen Huang, he and Elon Musk of Tesla, Inc. and xAI "were begging" for H100s, "I guess is the best way to describe it. An hour of sushi and begging". [20]
In January 2024, Raymond James Financial analysts estimated that Nvidia was selling the H100 GPU in the price range of $25,000 to $30,000 each, while on eBay, individual H100s cost over $40,000. [21] As of February 2024, Nvidia was reportedly shipping H100 GPUs to data centers in armored cars. [22]
Comparison of accelerators used in DGX: [23] [24] [25]
Model | Architecture | Socket | FP32 CUDA cores | FP64 cores (excl. tensor) | Mixed INT32/FP32 cores | INT32 cores | Boost clock | Memory clock | Memory bus width | Memory bandwidth | VRAM | Single precision (FP32) | Double precision (FP64) | INT8 (non-tensor) | INT8 dense tensor | INT32 | FP4 dense tensor | FP16 | FP16 dense tensor | bfloat16 dense tensor | TensorFloat-32 (TF32) dense tensor | FP64 dense tensor | Interconnect (NVLink) | GPU | L1 Cache | L2 Cache | TDP | Die size | Transistor count | Process | Launched |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B200 | Blackwell | SXM6 | N/A | N/A | N/A | N/A | N/A | 8 Gbit/s HBM3e | 8192-bit | 8 TB/sec | 192 GB HBM3e | N/A | N/A | N/A | 4.5 POPS | N/A | 9 PFLOPS | N/A | 2.25 PFLOPS | 2.25 PFLOPS | 1.2 PFLOPS | 40 TFLOPS | 1.8 TB/sec | GB100 | N/A | N/A | 1000 W | N/A | 208 B | TSMC 4NP | Q4 2024 (expected) |
B100 | Blackwell | SXM6 | N/A | N/A | N/A | N/A | N/A | 8 Gbit/s HBM3e | 8192-bit | 8 TB/sec | 192 GB HBM3e | N/A | N/A | N/A | 3.5 POPS | N/A | 7 PFLOPS | N/A | 1.98 PFLOPS | 1.98 PFLOPS | 989 TFLOPS | 30 TFLOPS | 1.8 TB/sec | GB100 | N/A | N/A | 700 W | N/A | 208 B | TSMC 4NP | |
H200 | Hopper | SXM5 | 16896 | 4608 | 16896 | N/A | 1980 MHz | 6.3 Gbit/s HBM3e | 6144-bit | 4.8 TB/sec | 141 GB HBM3e | 67 TFLOPS | 34 TFLOPS | N/A | 1.98 POPS | N/A | N/A | N/A | 990 TFLOPS | 990 TFLOPS | 495 TFLOPS | 67 TFLOPS | 900 GB/sec | GH100 | 25344 KB (192 KB × 132) | 51200 KB | 1000 W | 814 mm2 | 80 B | TSMC 4N | Q3 2023 |
H100 | Hopper | SXM5 | 16896 | 4608 | 16896 | N/A | 1980 MHz | 5.2 Gbit/s HBM3 | 5120-bit | 3.35 TB/sec | 80 GB HBM3 | 67 TFLOPS | 34 TFLOPS | N/A | 1.98 POPS | N/A | N/A | N/A | 990 TFLOPS | 990 TFLOPS | 495 TFLOPS | 67 TFLOPS | 900 GB/sec | GH100 | 25344 KB (192 KB × 132) | 51200 KB | 700 W | 814 mm2 | 80 B | TSMC 4N | Q3 2022 |
A100 80GB | Ampere | SXM4 | 6912 | 3456 | 6912 | N/A | 1410 MHz | 3.2 Gbit/s HBM2e | 5120-bit | 1.52 TB/sec | 80 GB HBM2e | 19.5 TFLOPS | 9.7 TFLOPS | N/A | 624 TOPS | 19.5 TOPS | N/A | 78 TFLOPS | 312 TFLOPS | 312 TFLOPS | 156 TFLOPS | 19.5 TFLOPS | 600 GB/sec | GA100 | 20736 KB (192 KB × 108) | 40960 KB | 400 W | 826 mm2 | 54.2 B | TSMC N7 | Q1 2020 |
A100 40GB | Ampere | SXM4 | 6912 | 3456 | 6912 | N/A | 1410 MHz | 2.4 Gbit/s HBM2 | 5120-bit | 1.52 TB/sec | 40 GB HBM2 | 19.5 TFLOPS | 9.7 TFLOPS | N/A | 624 TOPS | 19.5 TOPS | N/A | 78 TFLOPS | 312 TFLOPS | 312 TFLOPS | 156 TFLOPS | 19.5 TFLOPS | 600 GB/sec | GA100 | 20736 KB (192 KB × 108) | 40960 KB | 400 W | 826 mm2 | 54.2 B | TSMC N7 | |
V100 32GB | Volta | SXM3 | 5120 | 2560 | N/A | 5120 | 1530 MHz | 1.75 Gbit/s HBM2 | 4096-bit | 900 GB/sec | 32 GB HBM2 | 15.7 TFLOPS | 7.8 TFLOPS | 62 TOPS | N/A | 15.7 TOPS | N/A | 31.4 TFLOPS | 125 TFLOPS | N/A | N/A | N/A | 300 GB/sec | GV100 | 10240 KB (128 KB × 80) | 6144 KB | 350 W | 815 mm2 | 21.1 B | TSMC 12FFN | Q3 2017 |
V100 16GB | Volta | SXM2 | 5120 | 2560 | N/A | 5120 | 1530 MHz | 1.75 Gbit/s HBM2 | 4096-bit | 900 GB/sec | 16 GB HBM2 | 15.7 TFLOPS | 7.8 TFLOPS | 62 TOPS | N/A | 15.7 TOPS | N/A | 31.4 TFLOPS | 125 TFLOPS | N/A | N/A | N/A | 300 GB/sec | GV100 | 10240 KB (128 KB × 80) | 6144 KB | 300 W | 815 mm2 | 21.1 B | TSMC 12FFN | |
P100 | Pascal | SXM/SXM2 | N/A | 1792 | 3584 | N/A | 1480 MHz | 1.4 Gbit/s HBM2 | 4096-bit | 720 GB/sec | 16 GB HBM2 | 10.6 TFLOPS | 5.3 TFLOPS | N/A | N/A | N/A | N/A | 21.2 TFLOPS | N/A | N/A | N/A | N/A | 160 GB/sec | GP100 | 1344 KB (24 KB × 56) | 4096 KB | 300 W | 610 mm2 | 15.3 B | TSMC 16FF+ | Q2 2016 |
GeForce is a brand of graphics processing units (GPUs) designed by Nvidia and marketed for the performance market. As of the GeForce 40 series, there have been eighteen iterations of the design. The first GeForce products were discrete GPUs designed for add-on graphics boards, intended for the high-margin PC gaming market, and later diversification of the product line covered all tiers of the PC graphics market, ranging from cost-sensitive GPUs integrated on motherboards, to mainstream add-in retail boards. Most recently, GeForce technology has been introduced into Nvidia's line of embedded application processors, designed for electronic handhelds and mobile handsets.
Quadro was Nvidia's brand for graphics cards intended for use in workstations running professional computer-aided design (CAD), computer-generated imagery (CGI), digital content creation (DCC) applications, scientific calculations and machine learning from 2000 to 2020.
In computing, CUDA is a proprietary parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs (GPGPU). CUDA API and its runtime: The CUDA API is an extension of the C programming language that adds the ability to specify thread-level parallelism in C and also to specify GPU device specific operations. CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements for the execution of compute kernels. In addition to drivers and runtime kernels, the CUDA platform includes compilers, libraries and developer tools to help programmers accelerate their applications.
Larrabee is the codename for a cancelled GPGPU chip that Intel was developing separately from its current line of integrated graphics accelerators. It is named after either Mount Larrabee or Larrabee State Park in the state of Washington. The chip was to be released in 2010 as the core of a consumer 3D graphics card, but these plans were cancelled due to delays and disappointing early performance figures. The project to produce a GPU retail product directly from the Larrabee research project was terminated in May 2010 and its technology was passed on to the Xeon Phi. The Intel MIC multiprocessor architecture announced in 2010 inherited many design elements from the Larrabee project, but does not function as a graphics processing unit; the product is intended as a co-processor for high performance computing.
The GeForce 400 series is a series of graphics processing units developed by Nvidia, serving as the introduction of the Fermi microarchitecture. Its release was originally slated in November 2009, however, after delays, it was released on March 26, 2010, with availability following in April 2010.
Fermi is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia, first released to retail in April 2010, as the successor to the Tesla microarchitecture. It was the primary microarchitecture used in the GeForce 400 series and 500 series. All desktop Fermi GPUs were manufactured in 40nm, mobile Fermi GPUs in 40nm and 28nm. Fermi is the oldest microarchitecture from Nvidia that receives support for Microsoft's rendering API Direct3D 12 feature_level 11.
Kepler is the codename for a GPU microarchitecture developed by Nvidia, first introduced at retail in April 2012, as the successor to the Fermi microarchitecture. Kepler was Nvidia's first microarchitecture to focus on energy efficiency. Most GeForce 600 series, most GeForce 700 series, and some GeForce 800M series GPUs were based on Kepler, all manufactured in 28 nm. Kepler found use in the GK20A, the GPU component of the Tegra K1 SoC, and in the Quadro Kxxx series, the Quadro NVS 510, and Tesla computing modules.
Nvidia Tesla is the former name for a line of products developed by Nvidia targeted at stream processing or general-purpose graphics processing units (GPGPU), named after pioneering electrical engineer Nikola Tesla. Its products began using GPUs from the G80 series, and have continued to accompany the release of new chips. They are programmable using the CUDA or OpenCL APIs.
Maxwell is the codename for a GPU microarchitecture developed by Nvidia as the successor to the Kepler microarchitecture. The Maxwell architecture was introduced in later models of the GeForce 700 series and is also used in the GeForce 800M series, GeForce 900 series, and Quadro Mxxx series, as well as some Jetson products.
NVLink is a wire-based serial multi-lane near-range communications link developed by Nvidia. Unlike PCI Express, a device can consist of multiple NVLinks, and devices use mesh networking to communicate instead of a central hub. The protocol was first announced in March 2014 and uses a proprietary high-speed signaling interconnect (NVHS).
Pascal is the codename for a GPU microarchitecture developed by Nvidia, as the successor to the Maxwell architecture. The architecture was first introduced in April 2016 with the release of the Tesla P100 (GP100) on April 5, 2016, and is primarily used in the GeForce 10 series, starting with the GeForce GTX 1080 and GTX 1070, which were released on May 27, 2016, and June 10, 2016, respectively. Pascal was manufactured using TSMC's 16 nm FinFET process, and later Samsung's 14 nm FinFET process.
Volta is the codename, but not the trademark, for a GPU microarchitecture developed by Nvidia, succeeding Pascal. It was first announced on a roadmap in March 2013, although the first product was not announced until May 2017. The architecture is named after 18th–19th century Italian chemist and physicist Alessandro Volta. It was Nvidia's first chip to feature Tensor Cores, specially designed cores that have superior deep learning performance over regular CUDA cores. The architecture is produced with TSMC's 12 nm FinFET process. The Ampere microarchitecture is the successor to Volta.
The Nvidia DGX represents a series of servers and workstations designed by Nvidia, primarily geared towards enhancing deep learning applications through the use of general-purpose computing on graphics processing units (GPGPU). These systems typically come in a rackmount format featuring high-performance x86 server CPUs on the motherboard.
Turing is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia. It is named after the prominent mathematician and computer scientist Alan Turing. The architecture was first introduced in August 2018 at SIGGRAPH 2018 in the workstation-oriented Quadro RTX cards, and one week later at Gamescom in consumer GeForce 20 series graphics cards. Building on the preliminary work of Volta, its HPC-exclusive predecessor, the Turing architecture introduces the first consumer products capable of real-time ray tracing, a longstanding goal of the computer graphics industry. Key elements include dedicated artificial intelligence processors and dedicated ray tracing processors. Turing leverages DXR, OptiX, and Vulkan for access to ray tracing. In February 2019, Nvidia released the GeForce 16 series GPUs, which utilizes the new Turing design but lacks the RT and Tensor cores.
Ampere is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to both the Volta and Turing architectures. It was officially announced on May 14, 2020 and is named after French mathematician and physicist André-Marie Ampère.
SXM is a high bandwidth socket solution for connecting Nvidia Compute Accelerators to a system. Each generation of Nvidia Tesla since P100 models, the DGX computer series and the HGX boards come with an SXM socket type that realizes high bandwidth, power delivery and more for the matching GPU daughter cards. Nvidia offers these combinations as an end-user product e.g. in their models of the DGX system series. Current socket generations are SXM for Pascal based GPUs, SXM2 and SXM3 for Volta based GPUs, SXM4 for Ampere based GPUs, and SXM5 for Hopper based GPUs. These sockets are used for specific models of these accelerators, and offer higher performance per card than PCIe equivalents. The DGX-1 system was the first to be equipped with SXM-2 sockets and thus was the first to carry the form factor compatible SXM modules with P100 GPUs and later was unveiled to be capable of allowing upgrading to SXM2 modules with V100 GPUs.
CDNA is a compute-centered graphics processing unit (GPU) microarchitecture designed by AMD for datacenters. Mostly used in the AMD Instinct line of data center graphics cards, CDNA is a successor to the Graphics Core Next (GCN) microarchitecture; the other successor being RDNA, a consumer graphics focused microarchitecture.
Ada Lovelace, also referred to simply as Lovelace, is a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to the Ampere architecture, officially announced on September 20, 2022. It is named after the English mathematician Ada Lovelace, one of the first computer programmers. Nvidia announced the architecture along with the GeForce RTX 40 series consumer GPUs and the RTX 6000 Ada Generation workstation graphics card. The Lovelace architecture is fabricated on TSMC's custom 4N process which offers increased efficiency over the previous Samsung 8 nm and TSMC N7 processes used by Nvidia for its previous-generation Ampere architecture.
Blackwell is a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to the Hopper and Ada Lovelace microarchitectures.