GeForce 500 series

Last updated

GeForce 500 series
Gtx 590.jpg
The GeForce GTX 590 released in 2010 is the series' flagship unit, sporting dual Fermi GF110 chips.
Release dateNovember 9, 2010;13 years ago (November 9, 2010)
CodenameGF11x
Architecture Fermi
ModelsGeForce series
  • GeForce GT series
  • GeForce GTX series
Transistors292M 40 nm (GF119)
  • 585M 40 nm (GF108)
  • 1.170M 40 nm (GF116)
  • 1.950M 40 nm (GF114)
  • 3.000M 40 nm (GF110)
Cards
Entry-levelGT 505
GT 510
GT 520
GT 530
Mid-rangeGT 545
GTX 550 Ti
GTX 560
GTX 560 Ti
GTX 560-448 Ti
High-endGTX 570
GTX 580
EnthusiastGTX 590
API support
DirectX Direct3D 11.0 (feature level 11_0) [1]
Shader Model 5.1
OpenCL OpenCL 1.1
OpenGL OpenGL 4.6
History
Predecessor GeForce 400 series
Successor GeForce 600 series
Support status
Unsupported

The GeForce 500 series is a series of graphics processing units developed by Nvidia, as a refresh of the Fermi based GeForce 400 series. It was first released on November 9, 2010 with the GeForce GTX 580.

Contents

Its direct competitor was AMD's Radeon HD 6000 series; they were launched approximately a month apart.

Overview

GTX 590 with shroud removed GTX 590 Cooler.jpg
GTX 590 with shroud removed

The Nvidia Geforce 500 series graphics cards are significantly modified versions of the GeForce 400 series graphics cards, in terms of performance and power management. Like the Nvidia GeForce 400 series graphics cards, the Nvidia Geforce 500 series supports DirectX 11.0,OpenGL 4.6, and OpenCL 1.1.

The refreshed Fermi chip includes 512 stream processors, grouped in 16 stream multiprocessors clusters (each with 32 CUDA cores), and is manufactured by TSMC in a 40 nm process.

The Nvidia GeForce GTX 580 graphics card is the first in the Nvidia GeForce 500 series to use a fully enabled chip based on the refreshed Fermi architecture, with all 16 stream multiprocessors clusters and all six 64-bit memory controllers active. The new GF110 GPU was enhanced with full speed FP16 filtering (the previous generation GF100 GPU could only do half-speed FP16 filtering) and improved z-culling units.

On January 25, 2011, Nvidia launched the GeForce GTX 560 Ti, to target the "sweet spot" segment where price/performance ratio is considered important. With its more than 30% improvement over the GTX 460, and performance in between the Radeon HD 6870 and 6950 1GB, the GTX 560 Ti directly replaced the GeForce GTX 470.

On February 17, 2011, it was reported that the GeForce GTX 550 Ti would be launching on March 15, 2011. Although the GTX 550 Ti is a GF116 mainstream chip, Nvidia chose to name its new card the GTX 550 Ti, and not the GTS 550. Performance was shown to be at least comparable and up to 12% faster than the current Radeon HD 5770. Price-wise, the new card trod into the range occupied by the GeForce GTX 460 (768 MB) and the Radeon HD 6790. [2]

On March 24, 2011, the GTX 590 was launched as the flagship graphics card for Nvidia. The GTX 590 is a dual-GPU card, similar to past releases such as the GTX 295, and boasted the potential to handle Nvidia's 3D Vision technology by itself. [3]

On April 13, 2011, the GT 520 was launched as the bottom-end card in the range, with lower performance than the equivalent number cards in the two previous generations, the GT 220 and the GT 420.[ citation needed ] However, it supported DirectX 11 and was more powerful than the GeForce 210, the GeForce 310, and the integrated graphics options on Intel CPUs.

On May 17, 2011, Nvidia launched a less expensive (non-Ti) version of the GeForce GTX 560 to strengthen Nvidia's price-performance in the $200 range. Like the faster GTX 560 Ti that came before it, this video card was also faster than the GeForce GTX 460. Standard versions of this card performed comparably to the AMD Radeon HD 6870, and would eventually replace the GeForce GTX 460. Premium versions of this card operate at higher speed (factory overclocked), and are slightly faster than the Radeon 6870, approaching the performance of basic versions of the Radeon HD 6950 and the GeForce GTX 560 Ti.

On November 28, 2011, Nvidia launched the "GTX 560 Ti With 448 Cores". [4] However, it does not use the silicon of the GTX 560 series: it is a GF110 chip with two shader blocks disabled. The most powerful version of the 560 series, this card was widely known to be a "limited production" card and was used as a marketing tool making use of the popularity of the GTX 560 brand for the 2011 Holiday season. The performance of the card resides between the regular 560 Ti and 570.

Counterfeit usage

The cards of this generation, particularly the smaller length 550 Ti model, are common cards of choice by counterfeit resellers, who take the cards and illicitly modify the firmware to have them report as more modern cards such as the GTX 1060 and 1050 Ti models. These cards are then sold via eBay, Taobao, Aliexpress and Wish.com by scammers. They may have a minimum of functionality to ensure at a first glance they appear legitimate, but defects caused by the fake BIOS, manufacturing and software issues will almost always cause crashes in modern games and applications, and if not, the performance will still be extremely poor. [5]

Products

An EVGA GTX 590 Classified EVGA GeForce GTX 590.jpg
An EVGA GTX 590 Classified

GeForce 500 (5xx) series

All products are produced using a 40 nm fabrication process. All products support DirectX 12.0, OpenGL 4.6 and OpenCL 1.1.

GeForce 500M (5xxM) series

The GeForce 500M series for notebook architecture.

ModelLaunch Code name Fab (nm) Bus interface Core config1Clock speed Fillrate Memory API support (version)Processing Power2
(GFLOPS)
TDP (watts)Notes
Core (MHz)Shader (MHz)Memory (MHz)Pixel (GP/s)Texture (GT/s)Size (MiB)Bandwidth (GB/s)Bus typeBus width (bit) DirectX OpenGL OpenCL Vulkan
GeForce GT 520MJanuary 5, 2011GF11940PCIe 2.0 x1648:8:4740148016002.965.92102412.8DDR36412.0
(11_0)
4.61.1142.0812
GeForce GT 520MGF10840PCIe 2.0 x1696:16:4515103016002.068.24102412.8DDR364197.7620Noticed in Lenovo laptops
GeForce GT 520MXMay 30, 2011GF11940PCIe 2.0 x1648:8:4900180018003.67.2102414.4DDR364172.820
GeForce GT 525MJanuary 5, 2011GF10840PCIe 2.0 x1696:16:4600120018002.49.6102428.8DDR3128230.420-23
GeForce GT 540MJanuary 5, 2011GF10840PCIe 2.0 x1696:16:4672134418002.68810.752102428.8DDR3128258.04832-35
GeForce GT 550MJanuary 5, 2011GF10840PCIe 2.0 x1696:16:4740148018002.9611.84102428.8DDR3128284.1632-35
GeForce GT 555MJanuary 5, 2011GF106

GF108
40PCIe 2.0 x16144:24:24
144:24:16
96:16:4
590
650
753
1180
1300
1506
1800
1800
3138
14.6
10.4
3
14.6
15.6
12
1536
2048
1024
43.2
28.8
50.2
DDR3
DDR3
GDDR5
192
128
128
339.84
374.4
289.15
30-35
GeForce GTX 560MMay 30, 2011GF11640PCIe 2.0 x16192:32:16
192:32:24
7751550250018.624.82048
1536, 3072
40.0
60.0
GDDR5128
192
595.275
GeForce GTX 570M [7] June 28, 2011GF11440PCIe 2.0 x16336:56:245751150300013.832.2153672.0GDDR5192772.875
GeForce GTX 580MJune 28, 2011GF11440PCIe 2.0 x16384:64:326201240300019.839.7204896.0GDDR5256952.3100

Chipset table

GeForce 500 (5xx) series

ModelLaunch Code name Fab (nm)Transistors (million)Die size (mm2) Bus interface SM countCore config [lower-alpha 1] [lower-alpha 2] Clock rate Fillrate Memory configurationSupported API versionProcessing power (GFLOPS) [lower-alpha 3] TDP (watts) [lower-alpha 4] Release Price (USD)
Core (MHz)Shader (MHz)Memory (MHz)Pixel (GP/s)Texture (GT/s)Size (MB)Bandwidth (GB/s)DRAM typeBus width (bit) Vulkan Direct3D OpenGL OpenCL 8 Single precision Double precision
GeForce 510September 29, 2011GF119 TSMC 40 nm 29279PCIe 2.0 x16148:8:4523104618002.14.51024
2048
14.4DDR364n/a [10] 12 FL 11_14.61.1100.4Un­known25OEM
GeForce GT 520April 12, 2011PCIe 2.0 x16
PCIe 2.0 x1
PCI
81016203.256.514.4155.5Un­known29$59
GeForce GT 530 [11] May 14, 2011GF108-220585116PCIe 2.0 x16296:16:470014002.811.228.8128268.822.4050OEM
GeForce GT 545GF116~1170~2383144:24:16720144011.5217.281536
3072
43192415.07Un­known70$149
8701740399613.9220.88102464GDDR5128501.12Un­known105OEM
GeForce GTX 550 TiMarch 15, 2011GF116-4004192:32:249001800410421.628.8768+256
1536
65.7+32.8
98.5
128+64 [lower-alpha 5]
192
691.2Un­known116$149
GeForce GTX 555May 14, 2011GF11419503326288:48:247361472382817.635.3102491.9128+64 [lower-alpha 5] 847.9Un­known150OEM
GeForce GTX 560 SEFebruary 20, 2012 [12] GF114-200-KB-A1 [lower-alpha 6] Un­known
GeForce GTX 560May 17, 2011GF114-325-A1 [lower-alpha 6] 7336:56:328101620400825.9245.361024 2048128.12561088.6Un­known$199
GeForce GTX 560 TiJanuary 25, 2011GF114-400-A1 [lower-alpha 6] 8384:64:32822164526.352.61128.261263.4110170$249
May 30, 2011GF110 [lower-alpha 7] 3000 [14] 520 [14] 11352:44:407321464380029.2832.211280
2560
1523201030.7128.83210 [lower-alpha 4] OEM
GeForce GTX 560 Ti 448 CoresNovember 29, 2011GF110-270-A1 [lower-alpha 7] 14448:56:4040.9912801311.7163.97$289
GeForce GTX 570December 7, 2010GF110-275-A1 [lower-alpha 7] 15480:60:4043.921280 25601405.4175.68219 [lower-alpha 4] $349
GeForce GTX 580November 9, 2010GF110-375-A1 [lower-alpha 7] 16512:64:487721544400837.0549.411536
3072 [lower-alpha 8]
192.3843841581.1197.63244 [lower-alpha 4] [16] $499
GeForce GTX 590March 24, 20112x GF110-351-A12x 30002x 5202x162x 512:64:48607121534142x29.142x38.852x 15362x163.872x3842488.3311.04365$699
ModelLaunch Code name Fab (nm)Transistors (million)Die size (mm2) Bus interface SM countCore config [lower-alpha 1] [lower-alpha 2] Clock rate Fillrate Memory configurationSupported API versionProcessing power (GFLOPS) [lower-alpha 3] TDP (Watts) [lower-alpha 4] Release Price (USD)
Core (MHz)Shader (MHz)Memory (MHz)Pixel (GP/s)Texture (GT/s)Size (MB)Bandwidth (GB/s)DRAM typeBus width (bit) Vulkan Direct3D OpenGL OpenCL 8 Single precision Double precision
  1. 1 2 Unified shaders: texture mapping units: render output units
  2. 1 2 Each SM in the GF110 contains 4 texture filtering units for every texture address unit. The complete GF110 die contains 64 texture address units and 256 texture filtering units. [8] Each SM in the GF114/116/118 architecture contains 8 texture filtering units for every texture address unit but has doubled both addressing and filtering units.
  3. 1 2 To calculate the processing power see Fermi (microarchitecture)#Performance.
  4. 1 2 3 4 5 Similar to previous generation, GTX 580 and most likely future GTX 570,[ needs update ] while reflecting its improvement over GF100, still have lower rated TDP and higher power consumption, e.g. GTX 580 (243W TDP) is slightly less power hungry than GTX 480 (250W TDP). This is managed by clock throttling through drivers when a dedicated power hungry application is identified that could breach card TDP. Application name changing will disable throttling and enable full power consumption, which in some cases could be close to that of GTX 480. [9]
  5. 1 2 1024 MB RAM on 192-bit bus assemble with 4 x (128 MB) + 2 x (256 MB).
  6. 1 2 3 Internally referred to as GF104B [13]
  7. 1 2 3 4 Internally referred to as GF100B [13]
  8. Some companies have announced that they will be offering the GTX 580 with 3GB RAM. [15]

Discontinued support

Nvidia announced that after Release 390 drivers, it will no longer release 32-bit drivers for 32-bit operating systems. [17]

Nvidia announced in April 2018 that Fermi will transition to legacy driver support status and be maintained until January 2019. [18]

See also

Notes

Related Research Articles

<span class="mw-page-title-main">GeForce</span> Brand of GPUs by Nvidia

GeForce is a brand of graphics processing units (GPUs) designed by Nvidia and marketed for the performance market. As of the GeForce 40 series, there have been eighteen iterations of the design. The first GeForce products were discrete GPUs designed for add-on graphics boards, intended for the high-margin PC gaming market, and later diversification of the product line covered all tiers of the PC graphics market, ranging from cost-sensitive GPUs integrated on motherboards, to mainstream add-in retail boards. Most recently, GeForce technology has been introduced into Nvidia's line of embedded application processors, designed for electronic handhelds and mobile handsets.

<span class="mw-page-title-main">GeForce 7 series</span> Series of GPUs by Nvidia

The GeForce 7 series is the seventh generation of Nvidia's GeForce line of graphics processing units. This was the last series available on AGP cards.

<span class="mw-page-title-main">Radeon R300 series</span> Series of video cards

The R300 GPU, introduced in August 2002 and developed by ATI Technologies, is its third generation of GPU used in Radeon graphics cards. This GPU features 3D acceleration based upon Direct3D 9.0 and OpenGL 2.0, a major improvement in features and performance compared to the preceding R200 design. R300 was the first fully Direct3D 9-capable consumer graphics chip. The processors also include 2D GUI acceleration, video acceleration, and multiple display outputs.

<span class="mw-page-title-main">GeForce 8 series</span> Series of GPUs by Nvidia

The GeForce 8 series is the eighth generation of Nvidia's GeForce line of graphics processing units. The third major GPU architecture developed by Nvidia, Tesla represents the company's first unified shader architecture.

<span class="mw-page-title-main">GeForce 9 series</span> Series of GPUs by Nvidia

The GeForce 9 series is the ninth generation of Nvidia's GeForce line of graphics processing units, the first of which was released on February 21, 2008. Products are based on a slightly repolished Tesla microarchitecture, adding PCIe 2.0 support, improved color and z-compression, and built on a 65 nm process, later using 55 nm process to reduce power consumption and die size.

<span class="mw-page-title-main">Tesla (microarchitecture)</span> GPU microarchitecture by Nvidia

Tesla is the codename for a GPU microarchitecture developed by Nvidia, and released in 2006, as the successor to Curie microarchitecture. It was named after the pioneering electrical engineer Nikola Tesla. As Nvidia's first microarchitecture to implement unified shaders, it was used with GeForce 8 series, GeForce 9 series, GeForce 100 series, GeForce 200 series, and GeForce 300 series of GPUs, collectively manufactured in 90 nm, 80 nm, 65 nm, 55 nm, and 40 nm. It was also in the GeForce 405 and in the Quadro FX, Quadro x000, Quadro NVS series, and Nvidia Tesla computing modules.

<span class="mw-page-title-main">GeForce 200 series</span> Series of GPUs by Nvidia

The GeForce 200 series is a series of Tesla-based GeForce graphics processing units developed by Nvidia.

The GeForce 300 series is a series of Tesla-based graphics processing units developed by Nvidia, first released in November 2009. Its cards are rebrands of the GeForce 200 series cards, available only for OEMs. All GPUs of the series support Direct3D 10.1, except the GT 330.

<span class="mw-page-title-main">Radeon HD 6000 series</span> Series of video cards

The Northern Islands series is a family of GPUs developed by Advanced Micro Devices (AMD) forming part of its Radeon-brand, based on the 40 nm process. Some models are based on TeraScale 2 (VLIW5), some on the new TeraScale 3 (VLIW4) introduced with them.

<span class="mw-page-title-main">GeForce 400 series</span> Series of GPUs by Nvidia

The GeForce 400 series is a series of graphics processing units developed by Nvidia, serving as the introduction of the Fermi microarchitecture. Its release was originally slated in November 2009, however, after delays, it was released on March 26, 2010, with availability following in April 2010.

<span class="mw-page-title-main">GeForce 600 series</span> Series of GPUs by Nvidia

The GeForce 600 series is a series of graphics processing units developed by Nvidia, first released in 2012. It served as the introduction of the Kepler architecture.

<span class="mw-page-title-main">GeForce 700 series</span> Series of GPUs by Nvidia

The GeForce 700 series is a series of graphics processing units developed by Nvidia. While mainly a refresh of the Kepler microarchitecture, some cards use Fermi (GF) and later cards use Maxwell (GM). GeForce 700 series cards were first released in 2013, starting with the release of the GeForce GTX Titan on February 19, 2013, followed by the GeForce GTX 780 on May 23, 2013. The first mobile GeForce 700 series chips were released in April 2013.

<span class="mw-page-title-main">Fermi (microarchitecture)</span> GPU microarchitecture by Nvidia

Fermi is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia, first released to retail in April 2010, as the successor to the Tesla microarchitecture. It was the primary microarchitecture used in the GeForce 400 series and GeForce 500 series. All desktop Fermi GPUs were manufactured in 40nm, mobile Fermi GPUs in 40nm and 28nm. Fermi is the oldest microarchitecture from NVIDIA that received support for Microsoft's rendering API Direct3D 12 feature_level 11.

<span class="mw-page-title-main">GeForce 900 series</span> Series of GPUs by Nvidia

The GeForce 900 series is a family of graphics processing units developed by Nvidia, succeeding the GeForce 700 series and serving as the high-end introduction to the Maxwell microarchitecture, named after James Clerk Maxwell. They are produced with TSMC's 28 nm process.

<span class="mw-page-title-main">GeForce 10 series</span> Series of GPUs by Nvidia

The GeForce 10 series is a series of graphics processing units developed by Nvidia, initially based on the Pascal microarchitecture announced in March 2014. This design series succeeded the GeForce 900 series, and is succeeded by the GeForce 16 series and GeForce 20 series using the Turing microarchitecture.

<span class="mw-page-title-main">Kepler (microarchitecture)</span> GPU microarchitecture by Nvidia

Kepler is the codename for a GPU microarchitecture developed by Nvidia, first introduced at retail in April 2012, as the successor to the Fermi microarchitecture. Kepler was Nvidia's first microarchitecture to focus on energy efficiency. Most GeForce 600 series, most GeForce 700 series, and some GeForce 800M series GPUs were based on Kepler, all manufactured in 28 nm. Kepler found use in the GK20A, the GPU component of the Tegra K1 SoC, and in the Quadro Kxxx series, the Quadro NVS 510, and Nvidia Tesla computing modules.

<span class="mw-page-title-main">Pascal (microarchitecture)</span> GPU microarchitecture by Nvidia

Pascal is the codename for a GPU microarchitecture developed by Nvidia, as the successor to the Maxwell architecture. The architecture was first introduced in April 2016 with the release of the Tesla P100 (GP100) on April 5, 2016, and is primarily used in the GeForce 10 series, starting with the GeForce GTX 1080 and GTX 1070, which were released on May 17, 2016, and June 10, 2016, respectively. Pascal was manufactured using TSMC's 16 nm FinFET process, and later Samsung's 14 nm FinFET process.

<span class="mw-page-title-main">GeForce 16 series</span> Series of GPUs by Nvidia

The GeForce 16 series is a series of graphics processing units developed by Nvidia, based on the Turing microarchitecture, announced in February 2019. The 16 series, commercialized within the same timeframe as the 20 series, aims to cover the entry-level to mid-range market, not addressed by the latter. As a result, the media have mainly compared it to AMD's Radeon RX 500 series of GPUs.

References

  1. Killian, Zak (July 3, 2017). "Nvidia finally lets Fermi GPU owners enjoy DirectX 12". Tech Report. Retrieved July 4, 2017.
  2. "GeForce GTX 550 Ti To Launch On 15 March".
  3. "ASUS NVIDIA GeForce GTX 590 graphics card reviewed and rated". Hexus. Retrieved May 29, 2018.
  4. Smith, Ryan (November 9, 2011). "NVIDIA's GeForce GTX 560 Ti w/448 Cores: GTX 570 On A Budget".
  5. Burke, Steve. "Fake "GTX 1050 1GB" Scam GPU Benchmark & Review". www.gamersnexus.net. Retrieved December 19, 2020.
  6. Nvidia's GeForce GTX 580: Fermi Refined
  7. "Graphics Cards, Gaming, Laptops, and Virtual Reality from NVIDIA GeForce".
  8. "GF110: Fermi Learns Some New Tricks - Nvidia's GeForce GTX 580: Fermi Refined". Anandtech.com. Archived from the original on January 13, 2016. Retrieved December 11, 2015.
  9. "Power, Temperature, and Noise - Nvidia's GeForce GTX 580: Fermi Refined". Anandtech.com. Archived from the original on January 13, 2016. Retrieved December 11, 2015.
  10. "The Khronos Group". May 31, 2022.
  11. "NVIDIA GeForce GT 530 OEM Specs". TechPowerUp. Retrieved September 25, 2022.
  12. "NVIDIA GeForce GTX 560 SE Specs" . Retrieved August 6, 2018.[ dead link ]
  13. 1 2 "...and GF110s real name is: GF100B". GPU-Tech.org. Archived from the original on January 13, 2016. Retrieved December 11, 2015.
  14. 1 2 Ryan Smith (November 9, 2010). "Nvidia's GeForce GTX 580: Fermi Refined". AnandTech. Archived from the original on November 10, 2010. Retrieved November 9, 2010.
  15. "Products - Featured Products". EVGA. Archived from the original on March 24, 2012. Retrieved December 11, 2015.
  16. "Nvidia GeForce GTX 580 1536 MB Review". TechPowerUp. November 9, 2010. Archived from the original on December 22, 2015. Retrieved December 11, 2015.
  17. "Support Plan for 32-bit and 64-bit Operating Systems | NVIDIA".
  18. "Support Plan for Fermi series GeForce GPUs | NVIDIA".