Manufacturer | Nvidia |
---|---|
Introduced | May 2, 2007 |
Discontinued | The brand Tesla discontinued in May 2020 , now branded as Nvidia Data Center GPUs |
Type | General purpose graphics cards |
Nvidia Tesla is the former name for a line of products developed by Nvidia targeted at stream processing or general-purpose graphics processing units (GPGPU), named after pioneering electrical engineer Nikola Tesla. Its products began using GPUs from the G80 series, and have continued to accompany the release of new chips. They are programmable using the CUDA or OpenCL APIs.
The Nvidia Tesla product line competed with AMD's Radeon Instinct and Intel Xeon Phi lines of deep learning and GPU cards.
Nvidia retired the Tesla brand in May 2020, reportedly because of potential confusion with the brand of cars. [1] Its new GPUs are branded Nvidia Data Center GPUs [2] as in the Ampere-based A100 GPU. [3]
Nvidia DGX servers feature Nvidia GPGPUs.
Offering computational power much greater than traditional microprocessors, the Tesla products targeted the high-performance computing market. [4] As of 2012 [update] , Nvidia Teslas power some of the world's fastest supercomputers, including Summit at Oak Ridge National Laboratory and Tianhe-1A, in Tianjin, China.
Tesla cards have four times the double precision performance of a Fermi-based Nvidia GeForce card of similar single precision performance.[ citation needed ] Unlike Nvidia's consumer GeForce cards and professional Nvidia Quadro cards, Tesla cards were originally unable to output images to a display. However, the last Tesla C-class products included one Dual-Link DVI port. [5]
Tesla products are primarily used in simulations and in large-scale calculations (especially floating-point calculations), and for high-end image generation for professional and scientific fields. [6]
In 2013, the defense industry accounted for less than one-sixth of Tesla sales, but Sumit Gupta predicted increasing sales to the geospatial intelligence market. [7]
Model | Micro- architecture | Launch | Core | Core clock (MHz) | Shaders | Memory | Processing power (TFLOPS) [a] | CUDA compute capability [b] | TDP (W) | Notes, form factor | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CUDA cores (total) | Base clock (MHz) | Max boost clock (MHz) [c] | Bus type | Bus width (bit) | Size (GB) | Clock (MT/s) | Bandwidth (GB/s) | Half precision Tensor Core FP32 Accumulate | Single precision (MAD or FMA) | Double precision (FMA) | ||||||||
C870 GPU Computing Module [d] | Tesla | May 2, 2007 | 1× G80 | 600 | 128 | 1,350 | — | GDDR3 | 384 | 1.5 | 1,600 | 76.8 | No | 0.3456 | No | 1.0 | 170.9 | Internal PCIe GPU (full-height, dual-slot) |
D870 Deskside Computer [d] | May 2, 2007 | 2× G80 | 600 | 256 | 1,350 | — | GDDR3 | 2× 384 | 2× 1.5 | 1,600 | 2× 76.8 | No | 0.6912 | No | 1.0 | 520 | Deskside or 3U rack-mount external GPUs | |
S870 GPU Computing Server [d] | May 2, 2007 | 4× G80 | 600 | 512 | 1,350 | — | GDDR3 | 4× 384 | 4× 1.5 | 1,600 | 4× 76.8 | No | 1.3824 | No | 1.0 | 1U rack-mount external GPUs, connect via 2× PCIe (×16) | ||
C1060 GPU Computing Module [e] | April 9, 2009 | 1× GT200 | 602 | 240 | 1,296 [9] | — | GDDR3 | 512 | 4 | 1,600 | 102.4 | No | 0.62208 | 0.07776 | 1.3 | 187.8 | Internal PCIe GPU (full-height, dual-slot) | |
S1070 GPU Computing Server "400 configuration" [e] | June 1, 2008 | 4× GT200 | 602 | 960 | 1296 | — | GDDR3 | 4× 512 | 4× 4 | 1,538.4 | 4× 98.5 | No | 2.4883 | 0.311 | 1.3 | 800 | 1U rack-mount external GPUs, connect via 2× PCIe (×8 or ×16) | |
S1070 GPU Computing Server "500 configuration" [e] | June 1, 2008 | 1,440 | — | No | 2,.7648 | 0.3456 | ||||||||||||
S1075 GPU Computing Server [e] [10] | June 1, 2008 | 4× GT200 | 602 | 960 | 1,440 | — | GDDR3 | 4× 512 | 4× 4 | 1,538.4 | 4× 98.5 | No | 2.7648 | 0.3456 | 1.3 | 1U rack-mount external GPUs, connect via 1× PCIe (×8 or ×16) | ||
Quadro Plex 2200 D2 Visual Computing System [f] | July 25, 2008 | 2× GT200GL | 648 | 480 | 1,296 | — | GDDR3 | 2× 512 | 2× 4 | 1,600 | 2× 102.4 | No | 1.2442 | 0.1555 | 1.3 | Deskside or 3U rack-mount external GPUs with 4 dual-link DVI outputs | ||
Quadro Plex 2200 S4 Visual Computing System [f] | July 25, 2008 | 4× GT200GL | 648 | 960 | 1,296 | — | GDDR3 | 4× 512 | 4× 4 | 1,600 | 4× 102.4 | No | 2.4883 | 0.311 | 1.3 | 1,200 | 1U rack-mount external GPUs, connect via 2× PCIe (×8 or ×16) | |
C2050 GPU Computing Module [11] | Fermi | July 25, 2011 | 1× GF100 | 575 | 448 | 1,150 | — | GDDR5 | 384 | 3 [g] | 3000 | 144 | No | 1.0304 | 0.5152 | 2.0 | 247 | Internal PCIe GPU (full-height, dual-slot) |
M2050 GPU Computing Module [12] | July 25, 2011 | — | 3,092 | 148.4 | No | 225 | ||||||||||||
C2070 GPU Computing Module [11] | July 25, 2011 | 1× GF100 | 575 | 448 | 1,150 | — | GDDR5 | 384 | 6 [g] | 3,000 | 144 | No | 1.0304 | 0.5152 | 2.0 | 247 | Internal PCIe GPU (full-height, dual-slot) | |
C2075 GPU Computing Module [13] | July 25, 2011 | — | 3,000 | 144 | No | 225 | ||||||||||||
M2070/M2070Q GPU Computing Module [14] | July 25, 2011 | — | 3,132 | 150.336 | No | 225 | ||||||||||||
M2090 GPU Computing Module [15] | July 25, 2011 | 1× GF110 | 650 | 512 | 1,300 | — | GDDR5 | 384 | 6 [g] | 3700 | 177.6 | No | 1.3312 | 0.6656 | 2.0 | 225 | Internal PCIe GPU (full-height, dual-slot) | |
S2050 GPU Computing Server | July 25, 2011 | 4× GF100 | 575 | 1792 | 1150 | — | GDDR5 | 4× 384 | 4× 3 [g] | 3 | 4× 148.4 | No | 4.1216 | 2.0608 | 2.0 | 900 | 1U rack-mount external GPUs, connect via 2× PCIe (×8 or ×16) | |
S2070 GPU Computing Server | July 25, 2011 | — | 4× 6 [g] | No | ||||||||||||||
K10 GPU accelerator [16] | Kepler | May 1, 2012 | 2× GK104 | — | 3,072 | 745 | ? | GDDR5 | 2× 256 | 2× 4 | 5,000 | 2× 160 | No | 4.577 | 0.1907 | 3.0 | 225 | Internal PCIe GPU (full-height, dual-slot) |
K20 GPU accelerator [17] [18] | November 12, 2012 | 1× GK110 | — | 2,496 | 706 | 758 | GDDR5 | 320 | 5 | 5,200 | 208 | No | 3.524 | 1.175 | 3.5 | 225 | Internal PCIe GPU (full-height, dual-slot) | |
K20X GPU accelerator [19] | November 12, 2012 | 1× GK110 | — | 2,688 | 732 | ? | GDDR5 | 384 | 6 | 5,200 | 250 | No | 3.935 | 1.312 | 3.5 | 235 | Internal PCIe GPU (full-height, dual-slot) | |
K40 GPU accelerator [20] | October 8, 2013 | 1× GK110B | — | 2,880 | 745 | 875 | GDDR5 | 384 | 12 [g] | 6,000 | 288 | No | 4.291–5.040 | 1.430–1.680 | 3.5 | 235 | Internal PCIe GPU (full-height, dual-slot) | |
K80 GPU accelerator [21] | November 17, 2014 | 2× GK210 | — | 4,992 | 560 | 875 | GDDR5 | 2× 384 | 2× 12 | 5,000 | 2× 240 | No | 5.591–8.736 | 1.864–2.912 | 3.7 | 300 | Internal PCIe GPU (full-height, dual-slot) | |
M4 GPU accelerator [22] [23] | Maxwell | November 10, 2015 | 1× GM206 | — | 1,024 | 872 | 1,072 | GDDR5 | 128 | 4 | 5,500 | 88 | No | 1.786–2.195 | 0.05581–0.06861 | 5.2 | 50–75 | Internal PCIe GPU (half-height, single-slot) |
M6 GPU accelerator [24] | August 30, 2015 | 1× GM204-995-A1 | — | 1536 | 722 | 1,051 | GDDR5 | 256 | 8 | 4,600 | 147.2 | No | 2.218–3.229 | 0.0693–0.1009 | 5.2 | 75–100 | Internal MXM GPU | |
M10 GPU accelerator [25] | May 18th, 2016 | 4× GM107 | — | 2,560 | 1,033 | ? | GDDR5 | 4× 128 | 4× 8 | 5,188 | 4× 83 | No | 5.289 | 0.1653 | 5.2 | 225 | Internal PCIe GPU (full-height, dual-slot) | |
M40 GPU accelerator [23] [26] | November 10, 2015 | 1× GM200 | — | 3,072 | 948 | 1,114 | GDDR5 | 384 | 12 or 24 | 6,000 | 288 | No | 5.825–6.844 | 0.182–0.2139 | 5.2 | 250 | Internal PCIe GPU (full-height, dual-slot) | |
M60 GPU accelerator [27] | August 30, 2015 | 2× GM204-895-A1 | — | 4,096 | 899 | 1,178 | GDDR5 | 2× 256 | 2× 8 | 5,000 | 2× 160 | No | 7.365–9.650 | 0.2301–0.3016 | 5.2 | 225–300 | Internal PCIe GPU (full-height, dual-slot) | |
P4 GPU accelerator [28] | Pascal | September 13, 2016 | 1× GP104 | — | 2,560 | 810 | 1,063 | GDDR5 | 256 | 8 | 6,000 | 192.0 | No | 4.147–5.443 | 0.1296–0.1701 | 6.1 | 50-75 | PCIe card |
P6 GPU accelerator [29] [30] | March 24, 2017 | 1× GP104-995-A1 | — | 2,048 | 1,012 | 1,506 | GDDR5 | 256 | 16 | 3,003 | 192.2 | No | 6.169 | 0.1928 | 6.1 | 90 | MXM card | |
P40 GPU accelerator [28] | September 13, 2016 | 1× GP102 | — | 3,840 | 1,303 | 1,531 | GDDR5 | 384 | 24 | 7,200 | 345.6 | No | 10.007–11.758 | 0.3127–0.3674 | 6.1 | 250 | PCIe card | |
P100 GPU accelerator (mezzanine) [31] [32] | April 5, 2016 | 1× GP100-890-A1 | — | 3,584 | 1,328 | 1,480 | HBM2 | 4,096 | 16 | 1,430 | 732 | No | 9.519–10.609 | 4.760–5.304 | 6.0 | 300 | SXM card | |
P100 GPU accelerator (16 GB card) [33] | June 20, 2016 | 1× GP100 | — | 1126 | 1303 | No | 8,071‒9,340 | 4,036‒4,670 | 250 | PCIe card | ||||||||
P100 GPU accelerator (12 GB card) [33] | June 20, 2016 | — | 3,072 | 12 | 549 | No | 8.071‒9.340 | 4.036‒4.670 | ||||||||||
V100 GPU accelerator (mezzanine) [34] [35] [36] | Volta | May 10, 2017 | 1× GV100-895-A1 | — | 5120 | Unknown | 1,455 | HBM2 | 4,096 | 16 or 32 | 1,750 | 900 | 119.192 | 14.899 | 7.450 | 7.0 | 300 | SXM card |
V100 GPU accelerator (PCIe card) [34] [35] [36] | June 21, 2017 | 1× GV100 | — | Unknown | 1,370 | 112.224 | 14.028 | 7.014 | 250 | PCIe card | ||||||||
V100 GPU accelerator (PCIe FHHL card) | March 27, 2018 | 1× GV100 | — | 937 | 1,290 | 16 | 1,620 | 829.44 | 105.68 | 13.21 | 6.605 | 250 | PCIe FHHL card | |||||
T4 GPU accelerator (PCIe card) [37] [38] | Turing | September 12, 2018 | 1× TU104-895-A1 | — | 2,560 | 585 | 1,590 | GDDR6 | 256 | 16 | 5,000 | 320 | 64.8 | 8.1 | Unknown | 7.5 | 70 | PCIe card |
A2 GPU accelerator (PCIe card) [39] | Ampere | November 10, 2021 | 1× GA107 | — | 1,280 | 1,440 | 1,770 | GDDR6 | 128 | 16 | 6,252 | 200 | 18.124 | 4.531 | 0.14 | 8.6 | 40-60 | PCIe card (half height, single-slot) |
A10 GPU accelerator (PCIe card) [40] | April 12, 2021 | 1× GA102-890-A1 | — | 9,216 | 885 | 1,695 | GDDR6 | 384 | 24 | 6,252 | 600 | 124.96 | 31.24 | 0.976 | 8.6 | 150 | PCIe card (single-slot) | |
A16 GPU accelerator (PCIe card) [41] | April 12, 2021 | 4× GA107 | — | 4× 1,280 | 885 | 1,695 | GDDR6 | 4× 128 | 4× 16 | 7,242 | 4× 200 | 4x 18.432 | 4× 4.608 | 1.0848 | 8.6 | 250 | PCIe card (dual-slot) | |
A30 GPU accelerator (PCIe card) [42] | April 12, 2021 | 1× GA100 | — | 3,584 | 930 | 1,440 | HBM2 | 3,072 | 24 | 1,215 | 933.1 | 165.12 | 10.32 | 5.161 | 8.0 | 165 | PCIe card (dual-slot) | |
A40 GPU accelerator (PCIe card) [43] | October 5, 2020 | 1× GA102 | — | 10,752 | 1,305 | 1,740 | GDDR6 | 384 | 48 | 7,248 | 695.8 | 149.68 | 37.42 | 1.168 | 8.6 | 300 | PCIe card (dual-slot) | |
A100 GPU accelerator (PCIe card) [44] [45] | May 14, 2020 [46] | 1× GA100-883AA-A1 | — | 6,912 | 765 | 1410 | HBM2 | 5,120 | 40 or 80 | 1,215 | 1,555 | 312.0 | 19.5 | 9.7 | 8.0 | 250 | PCIe card (dual-slot) | |
H100 GPU accelerator (PCIe card) [47] | Hopper | March 22, 2022 [48] | 1× GH100 [49] | — | 14,592 | 1,065 | 1,755 CUDA 1620 TC | HBM2E | 5120 | 80 | 1,000 | 2,039 | 756.449 | 51.2 | 25.6 | 9.0 | 350 | PCIe card (dual-slot) |
H100 GPU accelerator (SXM card) | — | 16,896 | 1,065 | 1,980 CUDA 1,830 TC | HBM3 | 5,120 | 80 | 1,500 | 3,352 | 989.43 | 66.9 | 33.5 | 9.0 | 700 | SXM card | |||
L40 GPU accelerator [50] | Ada Lovelace | October 13, 2022 | 1× AD102 [51] | — | 18,176 | 735 | 2,490 | GDDR6 | 384 | 48 | 2,250 | 864 | 362.066 | 90.516 | 1.414 | 8.9 | 300 | PCIe card (dual-slot) |
L4 GPU accelerator [52] [53] | March 21, 2023 [54] | 1x AD104 [55] | — | 7,424 | 795 | 2,040 | GDDR6 | 192 | 24 | 1,563 | 300 | 121.0 | 30.3 | 0.49 | 8.9 | 72 | HHHL single slot PCIe card |
Notes
GeForce is a brand of graphics processing units (GPUs) designed by Nvidia and marketed for the performance market. As of the GeForce 40 series, there have been eighteen iterations of the design. The first GeForce products were discrete GPUs designed for add-on graphics boards, intended for the high-margin PC gaming market, and later diversification of the product line covered all tiers of the PC graphics market, ranging from cost-sensitive GPUs integrated on motherboards, to mainstream add-in retail boards. Most recently, GeForce technology has been introduced into Nvidia's line of embedded application processors, designed for electronic handhelds and mobile handsets.
A graphics processing unit (GPU) is a specialized electronic circuit initially designed for digital image processing and to accelerate computer graphics, being present either as a discrete video card or embedded on motherboards, mobile phones, personal computers, workstations, and game consoles. After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.
Quadro was Nvidia's brand for graphics cards intended for use in workstations running professional computer-aided design (CAD), computer-generated imagery (CGI), digital content creation (DCC) applications, scientific calculations and machine learning from 2000 to 2020.
Tegra is a system on a chip (SoC) series developed by Nvidia for mobile devices such as smartphones, personal digital assistants, and mobile Internet devices. The Tegra integrates an ARM architecture central processing unit (CPU), graphics processing unit (GPU), northbridge, southbridge, and memory controller onto one package. Early Tegra SoCs are designed as efficient multimedia processors. The Tegra-line evolved to emphasize performance for gaming and machine learning applications without sacrificing power efficiency, before taking a drastic shift in direction towards platforms that provide vehicular automation with the applied "Nvidia Drive" brand name on reference boards and its semiconductors; and with the "Nvidia Jetson" brand name for boards adequate for AI applications within e.g. robots or drones, and for various smart high level automation purposes.
The GeForce 400 series is a series of graphics processing units developed by Nvidia, serving as the introduction of the Fermi microarchitecture. Its release was originally slated in November 2009, however, after delays, it was released on March 26, 2010, with availability following in April 2010.
Graphics Core Next (GCN) is the codename for a series of microarchitectures and an instruction set architecture that were developed by AMD for its GPUs as the successor to its TeraScale microarchitecture. The first product featuring GCN was launched on January 9, 2012.
The GeForce 900 series is a family of graphics processing units developed by Nvidia, succeeding the GeForce 700 series and serving as the high-end introduction to the Maxwell microarchitecture, named after James Clerk Maxwell. They are produced with TSMC's 28 nm process.
NVLink is a wire-based serial multi-lane near-range communications link developed by Nvidia. Unlike PCI Express, a device can consist of multiple NVLinks, and devices use mesh networking to communicate instead of a central hub. The protocol was first announced in March 2014 and uses a proprietary high-speed signaling interconnect (NVHS).
Pascal is the codename for a GPU microarchitecture developed by Nvidia, as the successor to the Maxwell architecture. The architecture was first introduced in April 2016 with the release of the Tesla P100 (GP100) on April 5, 2016, and is primarily used in the GeForce 10 series, starting with the GeForce GTX 1080 and GTX 1070, which were released on May 27, 2016, and June 10, 2016, respectively. Pascal was manufactured using TSMC's 16 nm FinFET process, and later Samsung's 14 nm FinFET process.
Volta is the codename, but not the trademark, for a GPU microarchitecture developed by Nvidia, succeeding Pascal. It was first announced on a roadmap in March 2013, although the first product was not announced until May 2017. The architecture is named after 18th–19th century Italian chemist and physicist Alessandro Volta. It was Nvidia's first chip to feature Tensor Cores, specially designed cores that have superior deep learning performance over regular CUDA cores. The architecture is produced with TSMC's 12 nm FinFET process. The Ampere microarchitecture is the successor to Volta.
The Nvidia DGX represents a series of servers and workstations designed by Nvidia, primarily geared towards enhancing deep learning applications through the use of general-purpose computing on graphics processing units (GPGPU). These systems typically come in a rackmount format featuring high-performance x86 server CPUs on the motherboard.
AMD Instinct is AMD's brand of data center GPUs. It replaced AMD's FirePro S brand in 2016. Compared to the Radeon brand of mainstream consumer/gamer products, the Instinct product line is intended to accelerate deep learning, artificial neural network, and high-performance computing/GPGPU applications.
The GeForce 20 series is a family of graphics processing units developed by Nvidia. Serving as the successor to the GeForce 10 series, the line started shipping on September 20, 2018, and after several editions, on July 2, 2019, the GeForce RTX Super line of cards was announced.
Turing is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia. It is named after the prominent mathematician and computer scientist Alan Turing. The architecture was first introduced in August 2018 at SIGGRAPH 2018 in the workstation-oriented Quadro RTX cards, and one week later at Gamescom in consumer GeForce 20 series graphics cards. Building on the preliminary work of Volta, its HPC-exclusive predecessor, the Turing architecture introduces the first consumer products capable of real-time ray tracing, a longstanding goal of the computer graphics industry. Key elements include dedicated artificial intelligence processors and dedicated ray tracing processors. Turing leverages DXR, OptiX, and Vulkan for access to ray tracing. In February 2019, Nvidia released the GeForce 16 series GPUs, which utilizes the new Turing design but lacks the RT and Tensor cores.
Ampere is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to both the Volta and Turing architectures. It was officially announced on May 14, 2020 and is named after French mathematician and physicist André-Marie Ampère.
Intel Xe, earlier known unofficially as Gen12, is a GPU architecture developed by Intel.
Hopper is a graphics processing unit (GPU) microarchitecture developed by Nvidia. It is designed for datacenters and is used alongside the Lovelace microarchitecture. It is the latest generation of the line of products formerly branded as Nvidia Tesla, now Nvidia Data Centre GPUs.
CDNA is a compute-centered graphics processing unit (GPU) microarchitecture designed by AMD for datacenters. Mostly used in the AMD Instinct line of data center graphics cards, CDNA is a successor to the Graphics Core Next (GCN) microarchitecture; the other successor being RDNA, a consumer graphics focused microarchitecture.
Ada Lovelace, also referred to simply as Lovelace, is a graphics processing unit (GPU) microarchitecture developed by Nvidia as the successor to the Ampere architecture, officially announced on September 20, 2022. It is named after the English mathematician Ada Lovelace, one of the first computer programmers. Nvidia announced the architecture along with the GeForce RTX 40 series consumer GPUs and the RTX 6000 Ada Generation workstation graphics card. The Lovelace architecture is fabricated on TSMC's custom 4N process which offers increased efficiency over the previous Samsung 8 nm and TSMC N7 processes used by Nvidia for its previous-generation Ampere architecture.
S1075 has one interface card