Render output unit

Last updated

In computer graphics, the render output unit (ROP) or raster operations pipeline is a hardware component in modern graphics processing units (GPUs) and one of the final steps in the rendering process of modern graphics cards. The pixel pipelines take pixel (each pixel is a dimensionless point) and texel information and process it, via specific matrix and vector operations, into a final pixel or depth value; this process is called rasterization. Thus, ROPs control antialiasing, when more than one sample is merged into one pixel. The ROPs perform the transactions between the relevant buffers in the local memory – this includes writing or reading values, as well as blending them together. Dedicated antialiasing hardware used to perform hardware-based antialiasing methods like MSAA is contained in ROPs.

All data rendered has to travel through the ROP in order to be written to the framebuffer, from there it can be transmitted to the display.

Therefore, the ROP is where the GPU's output is assembled into a bitmapped image ready for display.

Historically the number of ROPs, texture mapping units (TMUs), and shader processing units/stream processors have been equal. However, from 2004, several GPUs have decoupled these areas to allow optimum transistor allocation for application workload and available memory performance. As the trend continues, it is expected that graphics processors will continue to decouple the various parts of their architectures to enhance their adaptability to future graphics applications. This design also allows chip makers to build a modular line-up, where the top-end GPUs are essentially using the same logic as the low-end products. [1] [2]

The terminology for ROPs can vary between manufacturers. For instance, while NVIDIA refers to them as ROPs, AMD uses the term "Render Backend" (RB) [3] .

See also

Related Research Articles

<span class="mw-page-title-main">Graphics card</span> Expansion card which generates a feed of output images to a display device

A graphics card is a computer expansion card that generates a feed of graphics output to a display device such as a monitor. Graphics cards are sometimes called discrete or dedicated graphics cards to emphasize their distinction to an integrated graphics processor on the motherboard or the central processing unit (CPU). A graphics processing unit (GPU) that performs the necessary computations is the main component in a graphics card, but the acronym "GPU" is sometimes also used to erroneously refer to the graphics card as a whole.

<span class="mw-page-title-main">Graphics processing unit</span> Specialized electronic circuit; graphics accelerator

A graphics processing unit (GPU) is a specialized electronic circuit initially designed for digital image processing and to accelerate computer graphics, being present either as a discrete video card or embedded on motherboards, mobile phones, personal computers, workstations, and game consoles. After their initial design, GPUs were found to be useful for non-graphic calculations involving embarrassingly parallel problems due to their parallel structure. Other non-graphical uses include the training of neural networks and cryptocurrency mining.

<span class="mw-page-title-main">GeForce 6 series</span> Series of GPUs by Nvidia

The GeForce 6 series is the sixth generation of Nvidia's GeForce line of graphics processing units. Launched on April 14, 2004, the GeForce 6 family introduced PureVideo post-processing for video, SLI technology, and Shader Model 3.0 support.

<span class="mw-page-title-main">Scalable Link Interface</span> Brand name; multi-GPU technology by Nvidia

Scalable Link Interface (SLI) is the brand name for a now discontinued multi-GPU technology developed by Nvidia for linking two or more video cards together to produce a single output. SLI is a parallel processing algorithm for computer graphics, meant to increase the available processing power.

<span class="mw-page-title-main">Shader</span> Type of program in a graphical processing unit (GPU)

In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene—a process known as shading. Shaders have evolved to perform a variety of specialized functions in computer graphics special effects and video post-processing, as well as general-purpose computing on graphics processing units.

General-purpose computing on graphics processing units is the use of a graphics processing unit (GPU), which typically handles computation only for computer graphics, to perform computation in applications traditionally handled by the central processing unit (CPU). The use of multiple video cards in one computer, or large numbers of graphics chips, further parallelizes the already parallel nature of graphics processing.

The R520 is a graphics processing unit (GPU) developed by ATI Technologies and produced by TSMC. It was the first GPU produced using a 90 nm photolithography process.

<span class="mw-page-title-main">RSX Reality Synthesizer</span> GPU for the PlayStation 3

The RSX 'Reality Synthesizer' is a proprietary graphics processing unit (GPU) codeveloped by Nvidia and Sony for the PlayStation 3 game console. It is based on the Nvidia 7800GTX graphics processor and, according to Nvidia, is a G70/G71 hybrid architecture with some modifications. The RSX has separate vertex and pixel shader pipelines. The GPU makes use of 256 MB GDDR3 RAM clocked at 650 MHz with an effective transmission rate of 1.3 GHz and up to 224 MB of the 3.2 GHz XDR main memory via the CPU . Although it carries the majority of the graphics processing, the Cell Broadband Engine, the console's CPU, is also used complementarily for some graphics-related computational loads of the console.

In computer graphics, a video card's pixel fillrate refers to the number of pixels that can be rendered on the screen and written to video memory in one second. Pixel fillrates are given in megapixels per second or in gigapixels per second, and are obtained by multiplying the number of render output units (ROPs) by the clock frequency of the graphics processing unit (GPU) of a video card.

In computer graphics, a texture mapping unit (TMU) is a component in modern graphics processing units (GPUs). They are able to rotate, resize, and distort a bitmap image to be placed onto an arbitrary plane of a given 3D model as a texture, in a process called texture mapping. In modern graphics cards it is implemented as a discrete stage in a graphics pipeline, whereas when first introduced it was implemented as a separate processor, e.g. as seen on the Voodoo2 graphics card.

Tiled rendering is the process of subdividing a computer graphics image by a regular grid in optical space and rendering each section of the grid, or tile, separately. The advantage to this design is that the amount of memory and bandwidth is reduced compared to immediate mode rendering systems that draw the entire frame at once. This has made tile rendering systems particularly common for low-power handheld device use. Tiled rendering is sometimes known as a "sort middle" architecture, because it performs the sorting of the geometry in the middle of the graphics pipeline instead of near the end.

<span class="mw-page-title-main">Unified shader model</span> GPU whose shading hardware has equal capabilities for all stages of rendering

In the field of 3D computer graphics, the unified shader model refers to a form of shader hardware in a graphical processing unit (GPU) where all of the shader stages in the rendering pipeline have the same capabilities. They can all read textures and buffers, and they use instruction sets that are almost identical.

Nvidia Optimus is a computer GPU switching technology created by Nvidia which, depending on the resource load generated by client software applications, will seamlessly switch between two graphics adapters within a computer system in order to provide either maximum performance or minimum power draw from the system's graphics rendering hardware.

<span class="mw-page-title-main">Radeon HD 8000 series</span> Family of GPUs by AMD

The Radeon HD 8000 series is a family of computer GPUs developed by AMD. AMD was initially rumored to release the family in the second quarter of 2013, with the cards manufactured on a 28 nm process and making use of the improved Graphics Core Next architecture. However the 8000 series turned out to be an OEM rebadge of the 7000 series.

<span class="mw-page-title-main">GPUOpen</span> Middleware software suite

GPUOpen is a middleware software suite originally developed by AMD's Radeon Technologies Group that offers advanced visual effects for computer games. It was released in 2016. GPUOpen serves as an alternative to, and a direct competitor of Nvidia GameWorks. GPUOpen is similar to GameWorks in that it encompasses several different graphics technologies as its main components that were previously independent and separate from one another. However, GPUOpen is partially open source software, unlike GameWorks which is proprietary and closed.

<span class="mw-page-title-main">Radeon Pro</span> Brand of AMD graphics cards intended for professional use

Radeon Pro is AMD's brand of professional oriented GPUs. It replaced AMD's FirePro brand in 2016. Compared to the Radeon brand for mainstream consumer/gamer products, the Radeon Pro brand is intended for use in workstations and the running of computer-aided design (CAD), computer-generated imagery (CGI), digital content creation (DCC), high-performance computing/GPGPU applications, and the creation and running of virtual reality programs and games.

<span class="mw-page-title-main">RDNA 2</span> GPU microarchitecture by AMD released in 2020

RDNA 2 is a GPU microarchitecture designed by AMD, released with the Radeon RX 6000 series on November 18, 2020. Alongside powering the RX 6000 series, RDNA 2 is also featured in the SoCs designed by AMD for the PlayStation 5, Xbox Series X/S, and Steam Deck consoles.

<span class="mw-page-title-main">Radeon RX 6000 series</span> Series of video cards by AMD

The Radeon RX 6000 series is a series of graphics processing units developed by AMD, based on their RDNA 2 architecture. It was announced on October 28, 2020 and is the successor to the Radeon RX 5000 series. It consists of the entry-level RX 6400, mid-range RX 6500 XT, high-end RX 6600, RX 6600 XT, RX 6650 XT, RX 6700, RX 6700 XT, upper high-end RX 6750 XT, RX 6800, RX 6800 XT, and enthusiast RX 6900 XT and RX 6950 XT for desktop computers; and the RX 6600M, RX 6700M, and RX 6800M for laptops. A sub-series for mobile, Radeon RX 6000S, was announced in CES 2022, targeting thin and light laptop designs.

<span class="mw-page-title-main">RDNA 3</span> GPU microarchitecture by AMD

RDNA 3 is a GPU microarchitecture designed by AMD, released with the Radeon RX 7000 series on December 13, 2022. Alongside powering the RX 7000 series, RDNA 3 is also featured in the SoCs designed by AMD for the Asus ROG Ally and Lenovo Legion Go consoles.

<span class="mw-page-title-main">Radeon RX 7000 series</span> Series of video cards by AMD

The Radeon RX 7000 series is a series of graphics processing units developed by AMD, based on their RDNA 3 architecture. It was announced on November 3, 2022 and is the successor to the Radeon RX 6000 series. The first two graphics cards of the family were released on Dec 13, 2022.

References

  1. "Life of a triangle - NVIDIA's logical pipeline". NVIDIA Developer. 2015-03-16. Retrieved 2018-07-23.
  2. "3s Render". Wednesday, 9 June 2021
  3. AMD. "Introducing RDNA Architecture (RDNA whitepaper)" (PDF). AMD.com. Retrieved 15 August 2024.