PowerVR

Last updated

PowerVR is a division of Imagination Technologies (formerly VideoLogic) that develops hardware and software for 2D and 3D rendering, and for video encoding, decoding, associated image processing and DirectX, OpenGL ES, OpenVG, and OpenCL acceleration. PowerVR also develops AI accelerators called Neural Network Accelerator (NNA).

Contents

The PowerVR product line was originally introduced to compete in the desktop PC market for 3D hardware accelerators with a product with a better price–performance ratio than existing products like those from 3dfx Interactive. Rapid changes in that market, notably with the introduction of OpenGL and Direct3D, led to rapid consolidation. PowerVR introduced new versions with low-power electronics that were aimed at the laptop computer market. Over time, this developed into a series of designs that could be incorporated into system-on-a-chip architectures suitable for handheld device use.

PowerVR accelerators are not manufactured by PowerVR, but instead their IP blocks of integrated circuit designs and patents are licensed to other companies, such as Texas Instruments, Intel, NEC, BlackBerry, Renesas, Samsung, Sony, STMicroelectronics, Freescale, Apple, [1] NXP Semiconductors (formerly Philips Semiconductors), and many others.

Technology

The PowerVR chipset uses a method of 3D rendering known as tile-based deferred rendering (often abbreviated as TBDR) which is tile-based rendering combined with PowerVR's proprietary method of Hidden Surface Removal (HSR) and Hierarchical Scheduling Technology (HST). As the polygon generating program feeds triangles to the PowerVR (driver), it stores them in memory in a triangle strip or an indexed format. Unlike other architectures, polygon rendering is (usually) not performed until all polygon information has been collated for the current frame. Furthermore, the expensive operations of texturing and shading of pixels (or fragments) is delayed, whenever possible, until the visible surface at a pixel is determined — hence rendering is deferred.

In order to render, the display is split into rectangular sections in a grid pattern. Each section is known as a tile. Associated with each tile is a list of the triangles that visibly overlap that tile. Each tile is rendered in turn to produce the final image.

Tiles are rendered using a process similar to ray-casting. Rays are numerically simulated as if cast onto the triangles associated with the tile and a pixel is rendered from the triangle closest to the camera. The PowerVR hardware typically calculates the depths associated with each polygon for one tile row in 1 cycle.[ dubious discuss ]

This method has the advantage that, unlike a more traditional early Z rejection based hierarchical systems, no calculations need to be made to determine what a polygon looks like in an area where it is obscured by other geometry. It also allows for correct rendering of partially transparent polygons, independent of the order in which they are processed by the polygon producing application. (This capability was only implemented in Series 2 including Dreamcast and one MBX variant. It is generally not included for lack of API support and cost reasons.) More importantly, as the rendering is limited to one tile at a time, the whole tile can be in fast on-chip memory, which is flushed to video memory before processing the next tile. Under normal circumstances, each tile is visited just once per frame.

PowerVR is a pioneer of tile based deferred rendering. Microsoft also conceptualized the idea with their abandoned Talisman project. Gigapixel, a company that developed IP for tile-based 3D graphics, was purchased by 3dfx, which in turn was subsequently purchased by Nvidia. Nvidia has now been shown to use tile rendering in the Maxwell and Pascal microarchitectures for a limited amount of geometry. [2]

ARM began developing another major tile based architecture known as Mali after their acquisition of Falanx.

Intel uses a similar concept in their integrated graphics products. However, its method, called zone rendering, does not perform full hidden surface removal (HSR) and deferred texturing, therefore wasting fillrate and texture bandwidth on pixels that are not visible in the final image.

Recent advances in hierarchical Z-buffering have effectively incorporated ideas previously only used in deferred rendering, including the idea of being able to split a scene into tiles and of potentially being able to accept or reject tile sized pieces of polygon.

Today, the PowerVR software and hardware suite has ASICs for video encoding, decoding and associated image processing. It also has virtualisation, and DirectX, OpenGL ES, OpenVG, and OpenCL acceleration. [3] Newest PowerVR Wizard GPUs have fixed-function Ray Tracing Unit (RTU) hardware and support hybrid rendering. [4]

PowerVR Graphics

Series1 (NEC)

VideoLogic Apocalypse 3Dx (NEC PowerVR PCX2 chip) VideoLogic Apocalypse 3Dx.jpg
VideoLogic Apocalypse 3Dx (NEC PowerVR PCX2 chip)
NEC D62011GD (PowerVR PCX2) NEC D62011GD (PowerVR PCX2).png
NEC D62011GD (PowerVR PCX2)

The first series of PowerVR cards was mostly designed as 3D-only accelerator boards that would use the main 2D video card's memory as framebuffer over PCI. Videologic's first PowerVR PC product to market was the 3-chip Midas3, which saw very limited availability in some OEM Compaq PCs. [5] [6] This card had very poor compatibility with all but the first Direct3D games, and even most SGL games did not run. However, its internal 24-bit color precision rendering was notable for the time.

The single-chip PCX1 was released in retail as the VideoLogic Apocalypse 3D [7] and featured an improved architecture with more texture memory, ensuring better game compatibility. This was followed by the further refined PCX2, which clocked 6 MHz higher, offloaded some driver work by including more chip functionality [8] and added bilinear filtering, and was released in retail on the Matrox M3D [9] and Videologic Apocalypse 3Dx cards. There was also the Videologic Apocalypse 5D Sonic, which combined the PCX2 accelerator with a Tseng ET6100 2D core and ESS Agogo sound on a single PCI board.

The PowerVR PCX cards were placed in the market as budget products and performed well in the games of their time, but weren't quite as fully featured as the 3DFX Voodoo accelerators (due to certain blending modes being unavailable, for instance). However, the PowerVR approach of rendering to the 2D card's memory meant that much higher 3D rendering resolutions could be possible in theory, especially with PowerSGL games that took full advantage of the hardware.

ModelLaunchFab (nm)Memory (MiB)Core clock (MHz)Memory clock (MHz)Core config1 Fillrate Memory
MOperations/sMPixels/sMTexels/sMPolygons/sBandwidth (GB/s)Bus typeBus width (bit)
Midas31996?266661:166666600.242 SDR+FPM232+162
PCX15004606060606000.48SDR64
PCX21997350666666666600.528

Series2 (NEC)

The second generation PowerVR2 ("PowerVR Series2", chip codename "CLX2") was brought to market in the Dreamcast console between 1998 and 2001. As part of an internal competition at Sega to design the successor to the Saturn, the PowerVR2 was licensed to NEC and was chosen ahead of a rival design based on the 3dfx Voodoo2. It was called "the Highlander Project" during development. [10] The PowerVR2 was paired with the Hitachi SH-4 in the Dreamcast, with the SH-4 as the T&L geometry engine and the PowerVR2 as the rendering engine. [11] The PowerVR2 also powered the Sega Naomi, the upgraded arcade system board counterpart of the Dreamcast.

However, the success of the Dreamcast meant that the PC variant, sold as Neon 250, appeared a year late to the market, [12] in late 1999. The Neon 250 was nevertheless competitive with the RIVA TNT2 and Voodoo3. [13] The Neon 250 features inferior hardware specifications compared to the PowerVR2 part used in Dreamcast, such as a halved tile size, among others.

ModelLaunchMemory (MiB)Core clock (MHz)Memory clock (MHz)Core config1 Fillrate Memory
MOperations/sMPixels/sMTexels/sMPolygons/sBandwidth (GB/s)Bus typeBus width (bit)
CLX2 [11] 199881001001:132003200 2
100 3
3200 2
100 3
7 40.8SDR64
PMX119993212512512512512501

Series3 (STMicro)

In 2000, the third generation PowerVR3 STG4000 KYRO was released, manufactured by new partner STMicroelectronics. The architecture was redesigned for better game compatibility and expanded to a dual-pipeline design for more performance. The refresh STM PowerVR3 KYRO II, released later in 2001, likely had a lengthened pipeline to attain higher clock speeds [14] and was able to rival the more expensive ATI Radeon DDR and NVIDIA GeForce 2 GTS in some benchmarks of the time, despite its modest specifications on paper and lack of hardware transform and lighting (T&L), a fact that Nvidia especially tried to capitalize on in a confidential paper they sent out to reviewers. [15] As games increasingly started to include more geometry with this feature in mind, the KYRO II lost its competitiveness.

The KYRO series had a decent featureset for a budget-oriented GPU in their time, including a few Direct3D 8.1-compliant features such as 8-layer multitexturing (not 8-pass) and Environment Mapped Bump Mapping (EMBM); Full Scene Anti-Aliasing (FSAA) and Trilinear/Anisotropic filtering were also present. [16] [17] [18] KYRO II could also perform Dot Product (Dot3) Bump Mapping at a similar speed as GeForce 2 GTS in benchmarks. [19] Omissions included hardware T&L (an optional feature in Direct3D 7), Cube Environment Mapping and legacy 8-bit paletted texture support. While the chip supported S3TC/DXTC texture compression, only the (most commonly used) DXT1 format was supported. [20] Support for the proprietary PowerSGL API was also dropped with this series.

16-bit output quality was excellent compared to most of its competitors, thanks to rendering to its internal 32-bit tile cache and downsampling to 16-bit instead of straight use of a 16-bit framebuffer. [21] This could play a role in improving performance without losing much image quality, as memory bandwidth was not plentiful. However, due to its unique concept on the market, the architecture could sometimes exhibit flaws such as missing geometry in games, and therefore the driver had a notable amount of compatibility settings, such as switching off the internal Z-buffer. These settings could cause a negative impact on performance.

A second refresh of the KYRO was planned for 2002, the STG4800 KYRO II SE. Samples of this card were sent to reviewers but it does not appear to have been brought to market. Apart from a clockspeed boost, this refresh was announced with a "EnT&L" HW T&L software emulation, which eventually made it into the drivers for the previous KYRO cards starting with version 2.0. The STG5500 KYRO III, based upon the next-generation PowerVR4, was completed and would have included hardware T&L but was shelved due to STMicro closing its graphics division.

ModelLaunchFab (nm)Memory (MiB)Core clock (MHz)Memory clock (MHz)Core config1 Fillrate Memory
MOperations/sMPixels/sMTexels/sMPolygons/sBandwidth (GB/s)Bus typeBus width (bit)
STG4000 KYRO2000 [22] 25032/641151152:223023023001.84SDR128
STG4500 KYRO II200118032/6417517535035035002.8
STG4800 KYRO II SE20026420020040040040003.2
STG5500 KYRO IIINever Released1302502504:410001000100008DDR

Series4 (STMicro)

PowerVR achieved great success in the mobile graphics market with its low power PowerVR MBX. MBX, and its SGX successors, were licensed a number of the top mobile semiconductor manufacturers in their mobile SoC chipsets, including Intel, Texas Instruments, Samsung, NEC, NXP Semiconductors, Freescale, Renesas, SiRF, Marvell, and Sunplus. [23]

These mobile chipsets with MBX IP in turn were used in several high-end cellphones and smartphones, including the original iPhone and iPod Touch (with Samsung S5L8900), Nokia N95 and Motorola RIZR Z8 (with TI OMAP 2420), and the Sony Ericsson P1 and M600 (NXP Nexperia PNX4008). It was also used in some PDAs such as the Dell Axim X50V and X51V featuring the Intel 2700G co-processor, as well as in set-top boxes featuring the MBX Lite-powered Intel CE 2110.

There were two variants: MBX and MBX Lite. Both had the same feature set, where the MBX was optimized for speed and MBX Lite was optimized for low power consumption. The MBX could also be paired up with options to include either a full or lite FPU, and/or full or lite VGP (Vector Graphics Processor).

ModelYearDie Size (mm2) [a] Core config Fillrate @ 200 MHzBus width (bit) API (version)
MTriangles/s [a] MPixel/s [a] DirectX OpenGL
MBX LiteFeb 20014 @ 130 nm?0/1/1/11.0100647.0, VS 1.11.1
MBX8 @ 130 nm?1.68150

Series5 (SGX)

PowerVR's Series5 SGX series features pixel, vertex, and geometry shader hardware, supporting OpenGL ES 2.0 and DirectX 10.1 with Shader Model 4.1.

The SGX GPU core is included in several popular systems-on-chip (SoC) used in many portable devices. Apple uses the A4 (manufactured by Samsung) in their iPhone 4, iPad, iPod Touch, and Apple TV, and in the Apple Watch as part of Apple S1. Texas Instruments' OMAP 3 and 4 series SoC's are used in the Amazon's Kindle Fire HD 8.9", Barnes and Noble's Nook HD(+), BlackBerry PlayBook, Nokia N9, Nokia N900, Sony Ericsson Vivaz, Motorola Droid/Milestone, Motorola Defy, Motorola RAZR D1/D3, Droid Bionic, Archos 70, Palm Pre, Samsung Galaxy SL, Galaxy Nexus, Open Pandora, and others. Samsung produces the Hummingbird SoC and uses it in their Samsung Galaxy S, Galaxy Tab, Samsung Wave S8500 Samsung Wave II S8530 and Samsung Wave III S860 devices. Hummingbird is also in Meizu M9 smartphone.

Intel used a number of SGX products in its Menlow, Moorestown, Medfield and Clover Trail+ Atom-based MID platforms. Using the SGX graphics chipsets helped Intel to successfully achieve the ultra-low power budgets required for passively cooled devices, such as smartphones, tablets and netbooks. [24] However, the significant difference in graphics architecture resulted in poor driver support. [25]

ModelYearDie Size (mm2) [a] Core config [b] Fillrate @ 200 MHzBus width (bit) API (version) GFLOPS @ 200 MHz
MTriangles/s [a] MPixel/s [a] OpenGL ES OpenGL Direct3D
SGX520Jul 20052.6@65 nm1/1710032-1282.00.8
SGX5307.2@65 nm2/1142001.6
SGX531Oct 2006 ?
SGX535Nov 2007 ?2/24002.19.0c
SGX540 ?4/2203.2
SGX545Jan 201012.5@65 nm403.210.1

Series5XT (SGX)

PowerVR Series5XT SGX chips are multi-core variants of the SGX series with some updates. It is included in the PlayStation Vita portable gaming device with the MP4+ Model of the PowerVR SGX543, the only intended difference, aside from the + indicating features customized for Sony, is the cores, where MP4 denotes 4 cores (quad-core) whereas the MP8 denotes 8 cores (octo-core). The Allwinner A31 (quad-core mobile application processor) features the dual-core SGX544 MP2. The Apple iPad 2 and iPhone 4S with the A5 SoC also feature a dual-core SGX543MP2. The iPad (3rd generation) A5X SoC features the quad-core SGX543MP4. [26] The iPhone 5 A6 SoC features the tri-core SGX543MP3. The iPad (4th generation) A6X SoC features the quad-core SGX554MP4. The Exynos variant of the Samsung Galaxy S4 sports the tri-core SGX544MP3 clocked at 533 MHz.

ModelDateClustersDie Size (mm2)Core config [c] Fillrate @ 200 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 200 MHz
(per core)
MPolygons/s(GP/s)(GT/s) OpenGL ES OpenGL OpenCL Direct3D
SGX543Jan 20091-165.4@32 nm4/2353.2 ?128-256 ?2.02.0?1.1 9.0 L1 6.4
SGX544Jun 2010 ? ?0.0 9.0 L3
SGX554Dec 20108.7@32 nm8/2 ? ?2.112.8

These GPU can be used in either single-core or multi-core configurations. [27]

Series5XE (SGX)

Introduced in 2014, the PowerVR GX5300 GPU [28] is based on the SGX architecture and is the world's smallest Android-capable graphics core, providing low-power products for entry-level smartphones, wearables, IoT and other small footprint embedded applications, including enterprise devices such as printers.

ModelDateClustersDie Size (mm2)Core config [c] Fillrate @ 200 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 200 MHz
(per core)
MPolygons/s(GP/s)(GT/s) OpenGL ES OpenGL OpenCL Direct3D
GX5300Jul 2014 ?0.55@28 nm ? ? ? ? ? ?2.0 ? ? ?0.8

Series6 (Rogue)

PowerVR Series6 GPUs [29] are based on an evolution of the SGX architecture codenamed Rogue. ST-Ericsson (now defunct) announced that its Nova application processors would include Imagination's next-generation PowerVR Series6 architecture. [30] MediaTek announced the quad-core MT8135 system on a chip (SoC) (two ARM Cortex-A15 and two ARM Cortex-A7 cores) for tablets. [31] Renesas announced its R-Car H2 SoC includes the G6400. [32] Allwinner Technology A80 SoC, (4 Cortex-A15 and 4 Cortex-A7) that is available in the Onda V989 tablet, features a PowerVR G6230 GPU. [33] The Apple A7 SoC integrates a graphics processing unit (GPU) which AnandTech believes to be a PowerVR G6430 in a four cluster configuration. [34]

Intel also continued its use of PowerVR graphics exclusively in its ultra-low-power Merrifield and Moorefield smartphone Atom platforms. [35]

PowerVR Series 6 GPUs have 2 TMUs/cluster. [36]

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 600 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 600 MHz
FP32/FP16
MPolygons/s(GP/s)(GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
G6100Feb 20131??@28 nm1/416?2.4128 ?1.13.12.x1.2 9.0 L3 38.4 / 57.6
G6200Jan 20122??@28 nm2/232?? ?3.210.076.8 / 76.8
G6230Jun 2012??@28 nm?? ?76.8 / 115.2
G6400Jan 20124??@28 nm4/264?4.8? ?153.6 / 153.6
G6430Jun 2012??@28 nm?? ?153.6 / 230.4
G6630Nov 20126??@28 nm6/296?7.2? ?230.4 / 345.6

Series6XE (Rogue)

PowerVR Series6XE GPUs [37] are based around Series6 and designed as entry-level chips aimed at offering roughly the same fillrate compared to the Series5XT series. They however feature refreshed API support such as Vulkan, OpenGL ES 3.1, OpenCL 1.2 and DirectX 9.3 (9.3 L3). [38] Rockchip and Realtek have used Series6XE GPUs in their SoCs.

PowerVR Series 6XE GPUs were announced on January 6, 2014. [38]

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate Bus width
(bit)
HSA-features API (version) GFLOPS(@ 600 MHz)

FP32/FP16

MPolygons/s(GP/s)(GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
G6050Jan 20140.5??@28 nm?/??????? ?1.13.13.21.2 9.0 L3 19.2 / 38.4
G6060Jan 2014??@28 nm?/??????? ?
G6100 (XE)Jan 20141??@28 nm?/??????? ?38.4 / 76.8
G6110Jan 2014??@28 nm?/??????? ?

Series6XT (Rogue)

PowerVR Series6XT GPUs [39] aims at reducing power consumption further through die area and performance optimization providing a boost of up to 50% compared to Series6 GPUs. Those chips sport PVR3C triple compression system-level optimizations and Ultra HD deep color. [40] The Apple iPhone 6, iPhone 6 Plus and iPod Touch (6th generation) with the A8 SoC feature the quad-core GX6450. [41] [42] An unannounced 8 cluster variant was used in the Apple A8X SoC for their iPad Air 2 model (released in 2014). The MediaTek MT8173 and Renesas R-Car H3 SoCs use Series6XT GPUs.

PowerVR Series 6XT GPUs were unveiled on January 6, 2014. [43]

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 450 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 450 MHz
FP32/FP16
MPolygons/s(GP/s)(GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
GX6240Jan 20142??@28 nm2/464/128?? ?1.13.13.31.210.057.6/115.2
GX6250??@28 nm352.8128 ?
GX6450419.1mm2@28 nm4/8128/256?3.6? ?115.2/230.4
GX66506??@28 nm6/12192/384?? ?172.8/345.6
GXA6850Unannounced838mm2@28 nm8/16256/512?128 ?230.4/460.8

Series7XE (Rogue)

PowerVR Series 7XE GPUs were announced on 10 November 2014. When announced, the 7XE series contained the smallest Android Extension Pack compliant GPU.

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 650 MHz
MPolygons/s(GP/s)(GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
GE7400Nov 20140.51.13.11.2 embedded profile 9.0 L3 20.8
GE7800141.6

Series7XT (Rogue)

PowerVR Series7XT GPUs [44] are available in configurations ranging from two to 16 clusters, offering dramatically scalable performance from 100 GFLOPS to 1.5 TFLOPS. The GT7600 is used in the Apple iPhone 6s and iPhone 6s Plus models (released in 2015) as well as the Apple iPhone SE model (released in 2016) and the Apple iPad model (released in 2017) respectively. An unannounced 12 cluster variant was used in the Apple A9X SoC for their iPad Pro models (released in 2015).

PowerVR Series 7XT GPUs were unveiled on 10 November 2014.

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 650 MHz
FP32/FP16
MPolygons/s(GP/s)(GT/s) Vulkan OpenGL ES OpenGL OpenCL Direct3D
GT7200Nov 201422/464/1281.13.13.3
(4.4 optional)
1.2 embedded profile
(FP optional)
10.0
(11.2 optional)
83.2/166.4
GT740044/8128/256166.4/332.8
GT760066/12192/384249.6/499.2
GT780088/16256/512332.8/665.6
GTA7850Unannounced1212/24384/768499.2/998.4
GT7900Nov 20141616/32512/1024665.6/1331.2

Series7XT Plus (Rogue)

PowerVR Series7XT Plus GPUs are an evolution of the Series7XT family and add specific features designed to accelerate computer vision on mobile and embedded devices, including new INT16 and INT8 data paths that boost performance by up to 4x for OpenVX kernels. Further improvements in shared virtual memory also enable OpenCL 2.0 support. The GT7600 Plus is used in the Apple iPhone 7 and iPhone 7 Plus models (released in 2016) as well as the Apple iPad model (released in 2018).

PowerVR Series 7XT Plus GPUs were announced on International CES, Las Vegas – 6 January 2016.

Series7XT Plus achieve up to 4x performance increase for vision applications.

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 650 MHz
FP32/FP16
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GT7200 PlusJanuary 20162?2/464/1282.61.13.23.3 (4.4 optional)1.0.12.0 ??83.2/166.4
GT7400 Plus4 ?4/8128/2565.2166.4/332.8
GT7600 PlusJune 20166??@10 nm6/12192/3847.84.412249.6/499.2

The GPUs are designed to offer improved in-system efficiency, improved power efficiency and reduced bandwidth for vision and computational photography in consumer devices, mid-range and mainstream smartphones, tablets and automotive systems such as advanced driver assistance systems (ADAS), infotainment, computer vision and advanced processing for instrument clusters.

The new GPUs include new feature set enhancements with a focus on next-generation compute:

Up to 4x higher performance for OpenVX/vision algorithms compared to the previous generation through improved integer (INT) performance (2x INT16; 4x INT8) Bandwidth and latency improvements through shared virtual memory (SVM) in OpenCL 2.0 Dynamic parallelism for more efficient execution and control through support for device enqueue in OpenCL 2.0

Series8XE (Rogue)

PowerVR Series8XE GPUs support OpenGL ES 3.2 and Vulkan 1.x and are available in 1, 2, 4 and 8 pixel/clock configurations, [45] enabling the latest games and apps and further driving down the cost of high quality UIs on cost sensitive devices.

PowerVR Series 8XE were announced February 22, 2016 at the Mobile World Congress 2016. They are an iteration of the Rogue microarchitecture and target entry-level SoC GPU market. New GPUs improve the performance/mm² for the smallest silicon footprint and power profile, while also incorporating hardware virtualization and multi-domain security. [46] Newer model were later released in January 2017, with a new low end and high end part. [47]

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 650 MHz
FP32/FP16
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GE8100 [48] January 20170.25 USC ? ?0.651.13.2 ?1.11.2 EP9.3 (optional)10.4 / 20.8
GE8200 [49] February 2016 ? ?1.3
GE8300 [50] 0.5 USC ? ?0.52.620.8 / 41.6
GE8310 ? ?
GE8430January 20172 USC ? ?5.283.2 / 166.4

Series8XEP (Rogue)

PowerVR Series8XEP were announced January 2017. There are an iteration of the Rogue microarchitecture and target the mid range SoC GPU market, targeting 1080p. The Series8XEP remains focused on die size and performance per unit

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 650 MHz
FP32/FP16
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GE8320 [51] January 20171 USC ? ?2.61.13.2 ?1.11.2 EP ?41.6 / 83.2
GE8325 ? ?
GE83402 USC ? ?83.2 / 166.4

Series8XT (Furian)

Announced on 8 March 2017, Furian is the first new PowerVR architecture since Rogue was introduced five years earlier. [52]

PowerVR Series 8XT were announced March 8, 2017. It is the first series GPU's based on the new Furian architecture. According to Imagination, GFLOPS/mm² is improved 35% and Fill rate/mm2 is improved 80% compared to the 7XT Plus series on the same node.[ citation needed ] Specific designs have not been announced as of March 2017. Series8XT features 32-wide pipeline clusters.

ModelDateClustersDie Size (mm2)Cluster config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS @ 650 MHz
FP32/FP16
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GT8525March 201722/?645.21.13.2 ?1.12.0 ?62.4/124.8
GT8540 [53] January 201844/?12810.4124.8/249.6

Series9XE (Rogue)

Announced in September 2017, Series9XE family of GPUs benefit from up to 25% Bandwidth savings over the previous generation GPUs. The Series9XE family is targeted for set-top boxes (STB), digital TVs (DTV) and low end smartphones SoCs Note: Data in table is per cluster. [54]

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 650 MHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GE9000September 20170.2516/10.651.13.211.2 EP10.4
GE910016/21.3
GE9115January 20180.532/220.8
GE9210September 201732/42.6
GE9215 [55] January 2018
GE9420September 2017

Series9XM (Rogue)

The Series9XM family of GPUs achieve up to 50% better performance density than the previous 8XEP generation. The Series9XM family targets mid-range smartphone SoCs.

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 650 MHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GM9125 [56] September 2017164/41.31.33.212.041.6
GM92202.61.11.2 EP
GM9226 [57] 1.3
GM92402128/42.61.183.2
GM9446 [58] 5.21.3
GM9740 [59] 2.63.0

Series9XEP (Rogue)

The Series9XEP family of GPUs was announced on December 4, 2018. [60] The Series9XEP family supports PVRIC4 image compression. [61] The Series9XEP family targets set-top boxes (STB), digital TVs (DTV) and low end smartphones SoCs.

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 650 MHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GE9608 [62] December 20180.532/?1.31.33.211.2 EP20.8
GE9610 ?
GE9710 ?
GE9920 [63] 164/?5.241.6

Series9XMP (Rogue)

The Series9XMP family of GPUs was announced on December 4, 2018. [60] The Series9XMP family supports PVRIC4 image compression. [61] The Series9XMP family targets mid-range smartphone SoCs.

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 650 MHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GM9740December 20182128/? ?1.13.211.2 EP83.2

Series9XTP (Furian)

The Series9XTP family of GPUs was announced on December 4, 2018. [60] The Series9XTP family supports PVRIC4 image compression. [61] The Series9XTP family targets high-end smartphone SoCs. Series9XTP features 40-wide pipeline clusters.

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 650 MHzBus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 650 MHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
GT9524 [64] December 2018 ? ?/?5.21.33.x13.0156

IMG A-Series (Albiorix)

The A-Series GPUs offer up to 250% better performance density than the previous Series 9. These GPUs are no longer called PowerVR, they are called IMG. [65]

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate
@ 1 GHz
Bus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 1 GHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenGL OpenVX OpenCL Direct3D
IMG AXE-1-16 [66] December 2019 ?1/?11.33.x ? ?3.0 ?16
IMG AXE-2-16 [67] ?216
IMG AXM-8-256 [68] 18256
IMG AXT-16-512 [69] 22/?16512
IMG AXT-32-1024 [70] 44/?321024
IMG AXT-48-153666/?481536
IMG AXT-64-204888/?642048

IMG B-Series

The B-Series GPUs offer up to 25% lower die space and 30% lower power than the previous A-Series.

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate
@ 1 GHz
Bus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 1 GHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenCL
IMG BXE-1-16 [71] October 20201/?11.33.x3.016
IMG BXE-2-32 [72] 232
IMG BXE-4-324
IMG BXE-4-32 MC2 [73] 2/?864
IMG BXE-4-32 MC33/?1296
IMG BXE-4-32 MC44/?16128
IMG BXM-4-64 MC1 [74] 1/?464
IMG BXM-4-64 MC2 [75] 2/?8128
IMG BXM-4-64 MC33/?12192
IMG BXM-4-64 MC44/?16256
IMG BXM-8-256 [76] 11/?8
IMG BXS-1-16116
IMG BXS-2-32232
IMG BXS-2-32 MC2464
IMG BXS-4-32 MC132
IMG BXS-4-32 MC2864
IMG BXS-4-32 MC31296
IMG BXS-4-32 MC416128
IMG BXS-4-64 MC1 [77] 464
IMG BXS-4-64 MC2 [78] 8128
IMG BXS-4-64 MC312192
IMG BXS-4-64 MC416256
IMG BXS-8-256 [79] 18
IMG BXS-16-512216512
IMG BXS-32-1024 MC1 [80] 4321024
IMG BXS-32-1024 MC2 [81] 8642048
IMG BXS-32-1024 MC312963072
IMG BXS-32-1024 MC4161284096
IMG BXT-16-51222/?16512
IMG BXT-32-1024 MC1 [82] 44/?321024
IMG BXT-32-1024 MC2 [83] 88/?642048
IMG BXT-32-1024 MC31212/?963072
IMG BXT-32-1024 MC41616/?1284096

IMG C-Series (Photon)

Imagination Technologies announced on the 4th of November 2021 the new C-series GPU architecture. [84]

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 1 GHzBus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 1 GHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenCL
IMG CXM-2-64 [85] November 20211/?21.33.x3.064
IMG CXM-4-64 [86] 4
IMG CXM-4-128 [87] 2/?128

IMG D-Series

Imagination Technologies announced on the 11th of January 2023 the new D-series GPU architecture. [88]

ModelDateClustersDie Size (mm2)Core config [d] SIMD lane Fillrate @ 1 GHzBus width
(bit)
HSA-features API (version) GFLOPS (FP32)
@ 1 GHz
MPolygons/s(GP/s)(GT/s) Vulkan (API) OpenGL ES OpenCL
IMG DXT-8-256 [89] January 20231/?81.33.x3.0256
IMG DXT-48-1536 0.5RT2 [90]  ?/?481536
IMG DXTP-48-1536 [91]
IMG DXTP-64-2048 [92]  ?/?642048
IMG DXT-72-2304 RT3 [93]  ?/?722304
IMG DXD-72-2304 MC1 [94]
IMG DXD-72-2304 MC2 [95]  ?/?1444608

Notes

  1. 1 2 3 4 5 6 Official Imgtec data
  2. USSE (Universal Scalable Shader Engine) lanes/TMUs
  3. 1 2 USSE2 (Universal Scalable Shader Engine 2) lanes/TMUs
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 USC (Unified Shading Cluster) lanes/TMUs per cluster

PowerVR Vision & AI

Series2NX

The Series2NX family of Neural Network Accelerators (NNA) was announced on September 21, 2017.

Series2NX core options:

ModelDateEngines8-bit TOPS16-bit TOPS8-bit MACs16-bit MACs APIs
AX2145 [96] September 2017?10.5512/clk256/clkIMG DNN

Android NN

AX2185 [97] 84.12.02048/clk1024/clk

Series3NX

The Series3NX family of Neural Network Accelerators (NNA) was announced on December 4, 2018. [98]

Series3NX core options:

ModelDateEngines8-bit TOPS16-bit TOPS8-bit MACs16-bit MACs APIs
AX3125December 2018?0.6?256/clk64/clkIMG DNN

Android NN

AX3145?1.2?512/clk128/clk
AX3365?2.0?1024/clk256/clk
AX3385?4.0?2048/clk512/clk
AX3595?10.0?4096/clk1024/clk

Series3NX multi-core options

ModelDateCores8-bit TOPS16-bit TOPS8-bit MACs16-bit MACs APIs
UH2X40December 2018220.0?8192/clk2048/clkIMG DNN

Android NN

UH4X40440.0?16384/clk4096/clk
UH8X40880.0?32768/clk8192/clk
UH16X4016160.0?65536/clk16384/clk

Series3NX-F

The Series3NX-F family of Neural Network Accelerators (NNA) was announced alongside the Series3NX family. The Series3NX-F family combines the Series 3NX with a Rogue-based GPGPU (NNPU), and local RAM. This allows support for programmability and floating-point. [98]

Implementations

The PowerVR GPU variants can be found in the following table of systems on chips (SoC). Implementations of PowerVR accelerators in products are listed here.

VendorDate SOC namePowerVR chipset Frequency GFLOPS (FP16)
Texas Instruments OMAP 3420 SGX530  ? ?
OMAP 3430 ? ?
OMAP 3440 ? ?
OMAP 3450 ? ?
OMAP 3515 ? ?
OMAP 3517 ? ?
OMAP 3530110 MHz0.88
OMAP 3620 ? ?
OMAP 3621 ? ?
OMAP 3630 ? ?
OMAP 3640 ? ?
Sitara AM335x [99] 200 MHz1.6
Sitara AM3715 ? ?
Sitara AM3891 ? ?
DaVinci DM3730200 MHz1.6
Integra C6A8168 ? ?
NEC EMMA Mobile/EV2 SGX530  ? ?
Renesas SH-Mobile G3 SGX530  ? ?
SH-Navi3 (SH7776)??
Sigma Designs SMP8656 SGX530  ? ?
SMP8910??
MediaTek MT6513 SGX531 281 MHz2.25
2010MT6573
2012MT6575M
Trident PNX8481 SGX531  ? ?
PNX8491??
HiDTV PRO-SX5??
MediaTek MT6515 SGX531 522 MHz4.2
2011MT6575
MT6517
MT6517T
2012MT6577
MT6577T
MT8317
MT8317T
MT8377
NEC NaviEngine EC-4260 SGX535 ??
NaviEngine EC-4270
Intel CE 3100 (Canmore) SGX535  ? ?
SCH US15/W/L (Poulsbo) ? ?
CE4100 (Sodaville) ? ?
CE4110 (Sodaville)200 MHz1.6
CE4130 (Sodaville)
CE4150 (Sodaville)400 MHz3.2
CE4170 (Sodaville)
CE4200 (Groveland)
Samsung APL0298C05 SGX535  ? ?
Apple April 3, 2010 Apple A4 (iPhone 4) SGX535 200 MHz1.6
Apple A4 (iPad)250 MHz2.0
Ambarella iOne SGX540  ? ?
Renesas SH-Mobile G4 SGX540  ? ?
SH-Mobile APE4 (R8A73720)??
R-Car E2 (R8A7794)??
Ingenic Semiconductor JZ4780 SGX540  ? ?
Samsung 2010Exynos 3110 SGX540 200 MHz3.2
2010S5PC110
S5PC111
S5PV210??
Texas Instruments Q1 2011OMAP 4430 SGX540 307 MHz4.9
OMAP 4460384 MHz6.1
Intel Q1 2013Atom Z2420 SGX540 400 MHz6.4
Actions Semiconductor ATM7021 SGX540 500 MHz8.0
ATM7021A
ATM7029B
Rockchip RK3168 SGX540 600 MHz9.6
Apple November 13, 2014 Apple S1 (Apple Watch (1st generation)) SGX543  ? ?
March 11, 2011 Apple A5 (iPhone 4S, iPod Touch (5th generation)) SGX543 MP2200 MHz12.8
March 2012 Apple A5 (iPad 2, iPad mini)250 MHz16.0
MediaTek MT5327 SGX543 MP2400 MHz25.6
Renesas R-Car H1 (R8A77790) SGX543 MP2 ? ?
Apple September 12, 2012 Apple A6 (iPhone 5, iPhone 5C) SGX543 MP3250 MHz24.0
March 7, 2012 Apple A5X (iPad (3rd generation)) SGX543 MP432.0
Sony CXD53155GG (PS Vita) SGX543 MP4+41-222 MHz5.248-28.416
ST-Ericsson Nova A9540 SGX544  ? ?
NovaThor L9540 ? ?
NovaThor L8540500 MHz16
NovaThor L8580600 MHz19.2
MediaTek July 2013MT6589M SGX544 156 MHz5
MT8117
MT8121
March 2013MT6589286 MHz9.2
MT8389
MT8125300 MHz9.6
July 2013MT6589T357 MHz11.4
Texas Instruments Q2 2012OMAP 4470 SGX544 384 MHz13.8
Broadcom Broadcom M320 SGX544  ? ?
Broadcom M340
Actions Semiconductor ATM7039 SGX544 450 MHz16.2
Allwinner Allwinner A31 SGX544 MP2300 MHz19.2
Allwinner A31S
Intel Q2 2013Atom Z2520 SGX544 MP2300 MHz21.6
Atom Z2560400 MHz25.6
Atom Z2580533 MHz34.1
Texas Instruments Q2 2013OMAP 5430 SGX544 MP2533 MHz34.1
OMAP 5432
Q4 2018Sitara AM6528
Sitara AM6548
SGX544
Allwinner Allwinner A83T SGX544 MP2700 MHz44.8
Allwinner H8
Samsung Q2 2013Exynos 5410 SGX544 MP3533 MHz51.1
Intel Atom Z2460 SGX545 533 MHz8.5
Atom Z2760
Atom CE5310 ? ?
Atom CE5315 ? ?
Atom CE5318 ? ?
Atom CE5320 ? ?
Atom CE5328 ? ?
Atom CE5335 ? ?
Atom CE5338 ? ?
Atom CE5343 ? ?
Atom CE5348 ? ?
Apple October 23, 2012 Apple A6X (iPad (4th generation)) SGX554 MP4300 MHz76.8
Apple September, 2016 Apple S1P (Apple Watch Series 1), Apple S2 (Apple Watch Series 2)Series6 (G6050  ?)??
Rockchip RK3368 G6110 600 MHz38.4
MediaTek Q1 2014MT6595M G6200 (2 Clusters)450 MHz57.6
MT8135
Q4 2014Helio X10 (MT6795M)550 MHz70.4
Helio X10 (MT6795T)
Q1 2014MT6595600 MHz76.8
MT6795700 MHz89.5
LG Q1 2012LG H13 G6200 (2 Clusters)600 MHz76.8
Allwinner Allwinner A80 G6230 (2 Clusters)533 MHz68.0
Allwinner A80T
Actions Semiconductor ATM9009 G6230 (2 Clusters)600 MHz76.8
MediaTek Q1 2015MT8173 GX6250 (2 Clusters)700 MHz89.6
Q1 2016MT8176600 MHz76.8
Intel Q1 2014Atom Z3460 G6400 (4 Clusters)533 MHz136.4
Atom Z3480
Renesas R-Car H2 (R8A7790x) G6400 (4 Clusters)600 MHz153.6
R-Car H3 (R8A7795) GX6650 (6 Clusters)230.4
Apple September 10, 2013 Apple A7 (iPhone 5S, iPad Air, iPad mini 2, iPad mini 3) G6430 (4 Clusters)450 MHz115.2
Intel Q2 2014Atom Z3530 G6430 (4 Clusters)457 MHz117
Atom Z3560533 MHz136.4
Q3 2014Atom Z3570
Q2 2014Atom Z3580
Apple September 9, 2014 Apple A8 (iPhone 6 / 6 Plus, iPad mini 4, Apple TV HD,

iPod Touch (6th generation))

GX6450 (4 Clusters)533 MHz136.4
October 16, 2014 Apple A8X (iPad Air 2) GX6850 (8 Clusters)272.9
September 9, 2015 Apple A9 (iPhone 6S / 6S Plus, iPhone SE (1st generation), iPad (5th generation))Series7XT GT7600 (6 Clusters)600 MHz230.4
Apple A9X (iPad Pro (9.7-inch), iPad Pro (12.9-inch))Series7XT GT7800 (12 Clusters)>652 MHz>500 [100]
September 7, 2016 Apple A10 Fusion (iPhone 7 / 7 Plus & iPad (6th generation))Series7XT GT7600 Plus (6 Clusters)900 MHz345.6
Spreadtrum 2017SC9861G-IASeries7XT GT7200
MediaTek Q1 2017Helio X30 (MT6799)Series7XT GT7400 Plus (4 Clusters)800 MHz204.8
Apple June 5, 2017 Apple A10X (iPad Pro (10.5-inch), iPad Pro (12.9-inch) (2nd generation), Apple TV 4K)Series7XT GT7600 Plus (12 Clusters)>912 MHz>700 [101]
Socionext 2017SC1810 Series8XE
Synaptics 2017Videosmart VS-550 (Berlin BG5CT)Series8XE GE8310
Mediatek2017MT6739Series8XE GE8100
MT8167Series8XE GE8300
2018Helio A20 (MT6761D)
Helio P22 (MT6762)Series8XE GE8320
Helio A22 (MT6762M)
Helio P35 (MT6765)
2019MT6731Series8XE GE8100
2020Helio A25Series8XE GE8320
Helio G25
Helio G35
2022Dimensity 930 (MT6855)IMG BXM-8-256950 MHz259.2
2023Dimensity 7020IMG BXM-8-256
Texas Instruments2020TDA4VMSeries8 GE8430
2023AM69 [102] IMG BXS-4-64800MHz50
Renesas2017R-Car D3 (R8A77995)Series8XE GE8300
Unisoc (Spreadtrum)2018SC9863ASeries8XE GE8322
Q1 2019Tiger T310Series8XE GE8300
Q3 2019Tiger T710Series9XM GM9446
Q1 2020Tiger T7510
Mediatek2018Helio P90Series9XM GM9446
Q1 2020Helio P95
SynapticsQ1 2020Videosmart VS680Series9XE GE9920
SemidriveQ2 2020X9, G9, V9 Series9XM

See also

References

  1. 93Digital (2 January 2020). "Imagination and Apple Sign New Agreement - Imagination". Imagination. Retrieved 2022-09-03.{{cite web}}: CS1 maint: numeric names: authors list (link)
  2. Smith, Ryan. "Hidden Secrets: Investigation Shows That NVIDIA GPUs Implement Tile Based Rasterization for Greater Efficiency". www.anandtech.com.
  3. Texas Instruments announces multi-core, 1.8GHz OMAP4470 ARM processor for Windows 8, By Amar Toor, June 2, 2011, Engadget
  4. "PowerVR - embedded graphics processors powering iconic products". Imagination.
  5. "Compaq Selects PowerVR 3D Graphics Architecture for Next- Generation, High-Performance Presarios Home PCs". Imagination Technologies Limited. Archived from the original on June 30, 2013. Retrieved 24 April 2013.
  6. "VideoLogic Targets PC OEMs with PowerVR 3D Accelerator Card". Imagination Technologies Limited. Archived from the original on June 30, 2013.
  7. "VideoLogic Launches PowerVR-Based 3D Graphics Card Apocalypse 3D". Imagination Technologies Limited. Archived from the original on 5 May 2018. Retrieved 24 April 2013.
  8. "Back to the start: PowerVR 25". August 23, 2017.
  9. "Matrox Graphics Inc. Selects PowerVR for new 3D Accelerator Add-In Card Range". Imagination Technologies Limited. Archived from the original on 2016-09-09. Retrieved 2016-01-20.
  10. "Power VR Prepares Highlander". Next Generation . No. 34. Imagine Media. October 1997. p. 20.
  11. 1 2 Hagiwara, Shiro; Oliver, Ian (November–December 1999). "Sega Dreamcast: Creating a Unified Entertainment World". IEEE Micro. 19 (6). Institute of Electrical and Electronics Engineers: 29–35. doi:10.1109/40.809375. Archived from the original on 2000-08-23.
  12. Andrawes, Michael. "The Future & History of Tile Rendering - Imagination Technologies / STMicro PowerVR Series 3: KYRO". www.anandtech.com. Retrieved 2024-02-20.
  13. "> "Sharky Extreme". sharkyextreme.com. 2000-10-11. Archived from the original on 2000-10-11. Retrieved 2021-01-18.
  14. Witheiler, Matthew. "STMicroelectronics Kyro II 64MB". www.anandtech.com.
  15. "Whay you should know" (PDF). dumpster.hardwaretidende.dk. 2001. Retrieved 2021-01-18.
  16. "Imagination Technologies' PowerVR™ in STMicroelectronics' KYRO™ PC Graphics Accelerator Unveiled". Imagination. Archived from the original on November 27, 2021.
  17. "STMicrolectronics announces next generation KYRO II ™ 3D Graphics Accelerator". Imagination. Archived from the original on 2021-01-22. Retrieved 2021-01-18.
  18. "PowerVR Technologies Debuts KYRO II SE™ Graphics Processor at CeBIT 2002". Imagination. Archived from the original on 2021-01-22. Retrieved 2021-01-18.
  19. "Ace's Hardware". February 2, 2002. Archived from the original on February 2, 2002.
  20. "Beyond3D - Imagination Technologies Videologic Vivid! 32MB KYRO". www.beyond3d.com.
  21. "Data". www.vogons.org. Retrieved 2021-01-18.
  22. "Már kapható a PowerColor Evil Kyro 64MB". HWSW (in Hungarian). Retrieved 2022-05-08.
  23. "Imagination Technologies | Imagination Technologies Extends Its Lead In Mobile Graphics PowerVR SGX". RealWire. 10 February 2008. Retrieved 4 May 2023.
  24. Shimpi, Anand Lal. "Intel's Medfield & Atom Z2460 Arrive for Smartphones: It's Finally Here". AnandTech. Retrieved 2021-01-18.
  25. "Intel Is Planning To Drop PowerVR Graphics". www.phoronix.com. Retrieved 4 May 2023.
  26. Apple iPad 2 GPU Performance Explored: PowerVR SGX543MP2 Benchmarked, by Anand Lal Shimpi, 2011/03/12, Anandtech
  27. Klug, Brian. "TI Announces OMAP4470 and Specs: PowerVR SGX544, 1.8 GHz Dual Core Cortex-A9". AnandTech. Retrieved 2021-01-18.
  28. "PowerVR Series5XE GX5300 GPU - Imagination Technologies". Imagination Technologies. Retrieved 2016-06-22.
  29. "PowerVR Series6 - Imagination Technologies". Imagination Technologies. Retrieved 2016-06-22.
  30. "Imagination partners drive mobile and embedded graphics to new level". 15 February 2011. Archived from the original on 2013-01-18., Imagination Technologies Ltd.
  31. "MediaTek Introduces Industry Leading Tablet SoC, MT8135". Archived from the original on 2013-08-01., MediaTek Inc.
  32. "R-Car H2"., Renesas Electronics Corporation Ltd
  33. Aufranc, Jean-Luc (July 1, 2014). "Pictures and Specs for CubieBoard 8 Development Board Powered by AllWinner A80 SoC".
  34. Lal Shimpi, Anand (September 17, 2013). "The iPhone 5s Review: GPU Architecture". AnandTech. Retrieved September 18, 2013.
  35. Shimpi, Anand Lal. "Intel Talks Atom Z3460/Z3480 (Merrifield), Z3560/Z3580 (Moorefield) and LTE at MWC 2014". www.anandtech.com. Retrieved 4 May 2023.
  36. Shimpi, Anand Lal. "The iPhone 5s Review". www.anandtech.com.
  37. "PowerVR Series6XE GPU Family - Imagination Technologies". Imagination Technologies. Retrieved 2016-06-22.
  38. 1 2 Imagination Technologies Announces Entry-Level PowerVR Series6XE GPU Family, January 6, 2014, AnandTech
  39. "PowerVR Series6XT GPU Family - Imagination Technologies". Imagination Technologies. Retrieved 2016-06-22.
  40. Imagination Technologies Announces PowerVR Series6XT Architecture, January 6, 2014, Imagination
  41. "Inside the iPhone 6 and iPhone 6 Plus". Chipworks. September 19, 2014. Archived from the original on May 3, 2015. Retrieved September 24, 2014.
  42. Smith, Ryan (September 23, 2014). "Chipworks Disassembles Apple's A8 SoC: GX6450, 4MB L3 Cache & More". AnandTech. Retrieved September 24, 2014.
  43. Smith, Ryan (January 6, 2014). "Imagination Technologies Announces PowerVR Series6XT Architecture". AnandTech.
  44. "PowerVR Series7XT GPU Family - Imagination Technologies". Imagination Technologies. Retrieved 2016-06-22.
  45. "PowerVR Series8XE GPU Family" . Retrieved 26 August 2018.
  46. "Latest Imagination PowerVR® Series8XE GPUs set new standard for performance, power and area in cost-sensitive markets". Imagination. Archived from the original on 2021-05-10. Retrieved 2021-01-18.
  47. Smith, Ryan (17 January 2017). "Imagination Announces PowerVR Series8XE Plus & New Series8XE Designs for Midrange Market". Anandtech. Retrieved 17 January 2017.
  48. https://www.imaginationtech.com/product/ge8100/
  49. "IMG GE8200 GPU - Imagination". Imagination.
  50. "IMG GE8300 GPU - Imagination". Imagination.
  51. https://www.imaginationtech.com/product/ge8320/
  52. Smith, Ryan. "Imagination Announces PowerVR Furian GPU Architecture: The Next Generation of PowerVR" . Retrieved 2017-03-08.
  53. Fiveash, Kelly (4 May 2017). "Imagination Technologies Can't Resolve Apple IP Spat, Opens Formal Dispute". Arstechnica. Retrieved 8 January 2018. Starting in 2019, Apple will no longer use firm's designs.
  54. "Making the best even better: PowerVR Series9XE and 9XM – the ultimate GPUs for today's embedded platforms". January 9, 2018.
  55. https://www.imaginationtech.com/product/ge9215/
  56. "IMG GM9125 GPU - Imagination". Imagination.
  57. "IMG GM9226 GPU - Imagination". Imagination.
  58. "IMG GM9446 GPU - Imagination". Imagination.
  59. "IMG GM9740 GPU - Imagination". Imagination.
  60. 1 2 3 "PowerVR 9XEP, 9XMP, and 9XTP GPUs Launched". PC Perspective. 4 December 2018. Retrieved 2019-05-30.
  61. 1 2 3 "Introducing PVRIC4 – taking image compression to the next level". Imagination. 2018-10-31. Retrieved 2019-05-30.
  62. "IMG GE9608 GPU - Imagination". Imagination.
  63. "IMG GE9920 GPU - Imagination". Imagination.
  64. "IMG GT9524 GPU - Imagination". Imagination.
  65. "IMG A-Series GPU". Imagination. Retrieved 2020-01-04.
  66. "IMG AXE-1-16 GPU". Imagination Technologies Limited. 2019. Retrieved 3 January 2020.
  67. "Find out about the PowerVR IMG AXE-2-16 embedded GPU IP Core". Imagination. Retrieved 2020-01-04.
  68. "Find out about the PowerVR IMG AXM-8-256 embedded GPU IP Core". Imagination. Retrieved 2020-01-04.
  69. "Find out about the PowerVR IMG AXT-16-512 embedded GPU IP Core". Imagination. Retrieved 2020-01-04.
  70. "Find out about the PowerVR IMG AXT-32-1024 embedded GPU IP Core". Imagination. Retrieved 2020-01-04.
  71. "IMG BXE-1-16 - Imagination". Imagination.
  72. "IMG BXE-2-32 - Imagination". Imagination.
  73. "IMG BXE-4-32 MC2 - Imagination". Imagination.
  74. "IMG BXM-4-64 MC1 - Imagination". Imagination.
  75. "IMG BXM-4-64 MC2 - Imagination". Imagination.
  76. https://www.imaginationtech.com/product/img-bxm-8-256/
  77. "IMG BXS-4-64 MC1 - Imagination". Imagination.
  78. https://www.imaginationtech.com/product/img-bxs-4-64-mc2/
  79. https://www.imaginationtech.com/product/img-bxs-8-256/
  80. "IMG BXS-32-1024 MC1 - Imagination". Imagination.
  81. https://www.imaginationtech.com/product/img-bxs-32-1024-mc2/
  82. https://www.imaginationtech.com/product/img-bxt-32-1024-mc1/
  83. "IMG BXT-32-1024 MC2 - Imagination". Imagination.
  84. 93Digital (4 November 2021). "company blog post". Imagination.{{cite web}}: CS1 maint: numeric names: authors list (link)
  85. "IMG CXM-2-64 - Imagination". Imagination.
  86. https://www.imaginationtech.com/product/img-cxm-4-64/
  87. "IMG CXM-4-128 - Imagination". Imagination.
  88. Balan, Cosmin (11 January 2023). "Imagination's IMG DXT GPU unlocks scalable, premium ray tracing for all mobile gamers - Imagination". Imagination.
  89. "IMG DXT-8-256 - Imagination". Imagination.
  90. "IMG DXT-48-1536 0.5RT2 - Imagination". Imagination.
  91. "Imagination DXTP-48-1536 GPU - Imagination". Imagination.
  92. "Imagination DXTP-64-2048 GPU - Imagination". Imagination.
  93. "IMG DXT-72-2304 RT3 - Imagination". Imagination.
  94. "IMG DXD-72-2304 MC1 - Imagination". Imagination.
  95. "IMG DXD-72-2304 MC2 - Imagination". Imagination.
  96. "PowerVR AX2145 Neural Network Accelerator (NNA) IP Core". Imagination. Retrieved 2019-05-30.
  97. "PowerVR AX2185 Neural Network Accelerator (NNA) IP Core". Imagination. Retrieved 2019-05-30.
  98. 1 2 Oh, Nate. "Imagination Goes Further Down the AI Rabbit Hole, Unveils PowerVR Series3NX Neural Network Accelerator". www.anandtech.com. Retrieved 2019-05-30.
  99. "AM3358 data sheet, product information and support | TI.com". www.ti.com. Retrieved 2025-01-01.
  100. Apple (2016-03-23), Apple - March Event 2016, archived from the original on 2021-12-12, retrieved 2017-09-29
  101. Humrick, Ryan; Smith, Matt. "40% Graphics Performance A9X". check references 44. Retrieved 2017-09-29.
  102. "AM69x Processors, Silicon Revision 1.0 datasheet (Rev. D) - am69" (PDF). Texas Instruments. February 2023. Archived (PDF) from the original on 26 September 2024.