OMAP

Last updated
A BeagleBoard featuring a TI OMAP3530 at its core BeagleBoard described.jpg
A BeagleBoard featuring a TI OMAP3530 at its core
TI OMAP4430 on PandaBoard PandaBoard described.png
TI OMAP4430 on PandaBoard
TI's Zoom2 reference hardware based on the OMAP 3430 processor TI ZoomII.jpg
TI's Zoom2 reference hardware based on the OMAP 3430 processor

OMAP (Open Multimedia Applications Platform) is a family of image/video processors that was developed by Texas Instruments. They are proprietary system on chips (SoCs) for portable and mobile multimedia applications. OMAP devices generally include a general-purpose ARM architecture processor core plus one or more specialized co-processors. Earlier OMAP variants commonly featured a variant of the Texas Instruments TMS320 series digital signal processor.

Contents

The platform was created after December 12, 2002, as STMicroelectronics and Texas Instruments jointly announced an initiative for Open Mobile Application Processor Interfaces (OMAPI) intended to be used with 2.5 and 3G mobile phones, that were going to be produced during 2003. [1] (This was later merged into a larger initiative and renamed the MIPI Alliance.) The OMAP was Texas Instruments' implementation of this standard. (The STMicroelectronics implementation was named Nomadik.)

OMAP enjoyed some success in the smartphone and tablet market until 2011 when it lost ground to Qualcomm Snapdragon. [2] On September 26, 2012, Texas Instruments announced that they would wind down their operations in smartphone and tablet oriented chips and focus on embedded platforms instead. [3] On November 14, 2012, Texas Instruments announced they would cut 1,700 jobs due to their shift from mobile to embedded platforms. [4] The last OMAP5 chips were released in Q2 2013.

OMAP family

The Galaxy Nexus, example of a smartphone with an OMAP 4460 SoC Galaxy Nexus smartphone.jpg
The Galaxy Nexus, example of a smartphone with an OMAP 4460 SoC

The OMAP family consists of three product groups classified by performance and intended application:

Further, two main distribution channels exist, and not all parts are available in both channels. The genesis of the OMAP product line is from partnership with cell phone vendors, and the main distribution channel involves sales directly to such wireless handset vendors. Parts developed to suit evolving cell phone requirements are flexible and powerful enough to support sales through less specialized catalog channels; some OMAP 1 parts, and many OMAP 3 parts, have catalog versions with different sales and support models. Parts that are obsolete from the perspective of handset vendors may still be needed to support products developed using catalog parts and distributor-based inventory management.

High-performance applications processors

These are parts originally intended for use as application processors in smartphones, with processors powerful enough to run significant operating systems (such as Linux, FreeBSD, Android or Symbian), support connectivity to personal computers, and support various audio and video applications.

OMAP 1

The OMAP 1 family started with a TI-enhanced ARM925 core (ARM925T), and then changed to a standard ARM926 core. It included many variants, most easily distinguished according to manufacturing technology (130 nm except for the OMAP171x series), CPU, peripheral set, and distribution channel (direct to large handset vendors, or through catalog-based distributors). In March 2009, the OMAP1710 family chips are still available to handset vendors.

Products using OMAP 1 processors include hundreds of cell phone models, and the Nokia 770 Internet tablets.

  • OMAP1510 – 168 MHz ARM925T (TI-enhanced) + C55x DSP
  • OMAP161x – 204 MHz ARM926EJ-S + C55x DSP, 130 nm technology
  • OMAP162x – 204 MHz ARM926EJ-S + C55x DSP + 2 MB internal SRAM, 130 nm technology
  • OMAP171x – 220  MHz ARM926EJ-S + C55x DSP, low-voltage 90 nm technology
  • OMAP5910 – catalog availability version of OMAP 1510
  • OMAP5912 – catalog availability version of OMAP1621 (or OMAP1611b in older versions)

OMAP 2

These parts were only marketed to handset vendors. Products using these include both Internet tablets and mobile phones:

  • OMAP2431 – 330 MHz ARM1136 + 220 MHz C64x DSP
  • OMAP2430 – 330 MHz ARM1136 + 220 MHz C64x DSP + PowerVR MBX lite GPU, 90 nm technology
  • OMAP2420 – 330 MHz ARM1136 + 220 MHz C55x DSP + PowerVR MBX GPU, 90 nm technology [5]

OMAP 3

The 3rd generation OMAP, the OMAP 3 [6] is broken into 3 distinct groups: the OMAP34x, the OMAP35x, and the OMAP36x. OMAP34x and OMAP36x are distributed directly to large handset (such as cell phone) manufacturers. OMAP35x is a variant of OMAP34x intended for catalog distribution channels. The OMAP36x is a 45 nm version of the 65 nm OMAP34x with higher clock speed. [7]

The OMAP 3611 found in devices like the Bookeen's Cybook Odyssey is a licensed crippled version of the OMAP 3621, both are the same silicon (as marking are the same) but officially the 3611 was sold to be only able to drive e-Ink screen and does not have access to IVA & DSP.

The video technology in the higher end OMAP 3 parts is derived in part from the DaVinci product line, which first packaged higher end C64x+ DSPs and image processing controllers with ARM9 processors last seen in the older OMAP 1 generation or ARM Cortex-A8. [8]

Not highlighted in the list below is that each OMAP 3 SoC has an "Image, Video, Audio" (IVA2) accelerator. These units do not all have the same capabilities. Most devices support 12 megapixel camera images, though some support 5 or 3 megapixels. Some support HD imaging.

Model number Fab CPU Frq (MHz) GPU DSP HSA-featuresUtilizing devices
OMAP3410 65 nm Cortex-A8 600 PowerVR SGX530 Un­knownUn­known
OMAP3420
OMAP3430 TMS320C64x+
OMAP3440800Un­known
List
OMAP3503600-
OMAP3515600PowerVR SGX530
OMAP3525600-
OMAP3530720 MHzPowerVR SGX530 TMS320C64x+ [11]
List
OMAP3611 45 nm 800
List
  • Cybook Odyssey [17]
OMAP3621800
OMAP36221000
OMAP3630600 MHz~1.2 GHzUn­known
List
OMAP36401.2 GHz

OMAP 4

The TI Ducati SIP core does video acceleration and accelerated image processing. Texas Instruments Ducati.svg
The TI Ducati SIP core does video acceleration and accelerated image processing.

The OMAP 4 line consists of the OMAP 4430, OMAP 4460 (formerly named 4440), [20] and OMAP 4470. The 4th generation OMAPs have a dual-core ARM Cortex-A9 CPU with two ARM Cortex-M3 cores, as part of the "Ducati" sub-system [21] for off-loading low-level tasks. [22] [23] [24] The OMAP 4430 was the SoC used in Google Glass. [25]

OMAP 4 uses ARM Cortex-A9's with ARM's SIMD engine (Media Processing Engine, aka NEON) which in some cases may have a significant performance advantage over Nvidia Tegra 2's ARM Cortex-A9s with non-vector floating point units. [26] It also uses a dual-channel LPDDR2 memory controller compared to Nvidia Tegra 2's single-channel memory controller.

All OMAP 4 processors come with an IVA3 multimedia hardware accelerator with a programmable DSP that enables 1080p Full HD and multi-standard video encoding and decoding. [27] [28] [29] [30]

The 4430 and 4460 use a PowerVR SGX540 graphics processing unit (GPU). The 4430's GPU runs at a clock frequency of 304 Mhz, and the 4460's GPU runs at 384 MHz. [31]

The 4470 has a PowerVR SGX544 GPU that supports DirectX 9 that enables it for use in Windows 8. It also has a dedicated 2D graphics core for increased power efficiency up to 50-90%. [32]

SoCCPUGPU DSP Image & Video accelerationMemory technologyAvailabilityDevices
Model Fab Microarchitecture # CoresFrq
(GHz)
TypeBus width (bit) Bandwidth (GB/s)
OMAP4430 45 nm Cortex-A9 21–1.2PowerVR SGX540 @ 304–365 MHz"Tesla" (C64T)"Ducati": [21] dual Cortex-M3@266 MHz
& IVA–HD
& ISS
LPDDR2 32-bit dual-channel7.4Q1 2011
OMAP44601.2–1.5PowerVR SGX540 @ 307–384 MHzQ4 2011
List
OMAP44701.3–1.5PowerVR SGX544 @ 277–384 MHz + Vivante GC320 (dedicated 2D graphics core) [32] Q2 2012
List

OMAP 5

The 5th generation OMAP, OMAP 5 SoC uses a dual-core ARM Cortex-A15 CPU with two additional Cortex-M4 cores to offload the A15s in less computationally intensive tasks to increase power efficiency, two PowerVR SGX544MP graphics cores and a dedicated TI 2D BitBlt graphics accelerator, a multi-pipe display sub-system and a signal processor. [44] They respectively support 24 and 20 megapixel cameras for front and rear 3D HD video recording. The chip also supports up to 8 GB of dual channel LPDDR2/DDR3 memory, output to four HD 3D displays and 3D HDMI 1.4 video output. OMAP 5 also includes three USB 2.0 ports, one lowspeed USB 3.0 OTG port and a SATA 2.0 controller.

Model number Fab CPUFrqGPUFrq DSP Memory technologyAvailabilityUtilizing devices
OMAP5430 28 nm Cortex-A15 (dual-core) [45] and
Cortex-M4 (dual-core)
1.5, 1.7 GHz PowerVR SGX544MP2 [46] + dedicated TI 2D BitBlt graphics accelerator532 MHz"Tesla" (C64T)32-bit dual-channel 532 MHz LPDDR2 (8.5 GB/sec) [47] Q2 2013
List
  • Jorjin APM-5
OMAP54321.5, 1.7 GHz532 MHz32-bit dual-channel 532 MHz DDR3 (8.5 GB/sec) [47] Q2 2013
List

Basic multimedia applications processors

GStreamer makes use of hardware acceleration through plugins provided by Texas Instruments. The API is DMAI (DaVinci Multimedia Application Interface). GStreamer and TI DMAI.svg
GStreamer makes use of hardware acceleration through plugins provided by Texas Instruments. The API is DMAI (DaVinci Multimedia Application Interface).

These are marketed only to handset manufacturers. They are intended to be highly integrated, low cost chips for consumer products. The OMAP-DM series are intended to be used as digital media coprocessors for mobile devices with high megapixel digital still and video cameras. These OMAP-DM chips incorporate both an ARM processor and an Image Signal Processor (ISP) to accelerate processing of camera images.

Integrated modem and applications processors

An OMAP 850 in an HTC Wizard OMAP-850.jpg
An OMAP 850 in an HTC Wizard

These are marketed only to handset manufacturers. Many of the newer versions are highly integrated for use in very low cost cell phones.

OMAP L-1x

The OMAP L-1x parts are marketed only through catalog channels, and have a different technological heritage than the other OMAP parts. Rather than deriving directly from cell phone product lines, they grew from the video-oriented DaVinci product line by removing the video-specific features while using upgraded DaVinci peripherals. A notable feature is use of a floating point DSP, instead of the more customary fixed point one.

The Hawkboard uses the OMAP-L138

Products using OMAP processors

Many mobile phones released during early 21st century have used OMAP SoCs, including the Nokia 3230, N9, N90, N91, N92, N95, N82, E61, E62, E63 and E90 mobile phones, as well as the Nokia 770, N800, N810 and N900 Internet tablets, Motorola Droid, Droid X, and Droid 2, and some early Samsung Galaxy devices, like Samsung Galaxy Tab 2 7.0 and Galaxy S II variant GT-I9100G.

The OMAP3430 is used in the Palm Pre, Pandora, and Touch Book. Other devices that use OMAP processors include Sony Ericsson's Satio (Idou) and Vivaz, most Samsung phones running Symbian (including Omnia HD), the Nook Color, some Archos tablets (such as Archos 80 gen 9 and Archos 101 gen 9), Kindle Fire HD, Blackberry Playbook, Kobo Arc, and B&N Nook HD.

Some all-in-one smart displays use OMAP 4 SoCs, including the Viewsonic VSD220, which uses an OMAP 4430.

OMAP SoCs are also used as the basis for a number of hobbyist, prototyping and evaluation boards, such as the BeagleBoard, PandaBoard, OMAP3 Board, Gumstix and Presonus digital mixing boards

Motorola MOTOTRBO 2. generation radios use the OMAP-L132 or OMAP-L138 secure CPU.

Similar platforms

See also

Related Research Articles

XScale is a microarchitecture for central processing units initially designed by Intel implementing the ARM architecture instruction set. XScale comprises several distinct families: IXP, IXC, IOP, PXA and CE, with some later models designed as system-on-a-chip (SoC). Intel sold the PXA family to Marvell Technology Group in June 2006. Marvell then extended the brand to include processors with other microarchitectures, like Arm's Cortex.

OpenMAX, often shortened as "OMX", is a non-proprietary and royalty-free cross-platform set of C-language programming interfaces. It provides abstractions for routines that are especially useful for processing of audio, video, and still images. It is intended for low power and embedded system devices that need to efficiently process large amounts of multimedia data in predictable ways, such as video codecs, graphics libraries, and other functions for video, image, audio, voice and speech.

PowerVR is a division of Imagination Technologies that develops hardware and software for 2D and 3D rendering, and for video encoding, decoding, associated image processing and DirectX, OpenGL ES, OpenVG, and OpenCL acceleration. PowerVR also develops AI accelerators called Neural Network Accelerator (NNA).

<span class="mw-page-title-main">TMS320</span> Series of Digital Signal Processor chips

TMS320 is a blanket name for a series of digital signal processors (DSPs) from Texas Instruments. It was introduced on April 8, 1983 through the TMS32010 processor, which was then the fastest DSP on the market.

ARM9 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings for microcontroller use. The ARM9 core family consists of ARM9TDMI, ARM940T, ARM9E-S, ARM966E-S, ARM920T, ARM922T, ARM946E-S, ARM9EJ-S, ARM926EJ-S, ARM968E-S, ARM996HS. Since ARM9 cores were released from 1998 to 2006, they are no longer recommended for new IC designs, instead ARM Cortex-A, ARM Cortex-M, ARM Cortex-R cores are preferred.

<span class="mw-page-title-main">Texas Instruments DaVinci</span> Family of system-on-a-chip processors

The Texas Instruments DaVinci is a family of system on a chip processors that are primarily used in embedded video and vision applications. Many processors in the family combine a DSP core based on the TMS320 C6000 VLIW DSP family and an ARM CPU core into a single system on chip. By using both a general-purpose processor and a DSP, the control and media portions can both be executed by separate processors.

<span class="mw-page-title-main">Nomadik</span>

Nomadik is a family of microprocessors for multimedia applications from STMicroelectronics, and later ST-NXP Wireless. It was originally based on the ARM9 ARM architecture(s), and was designed specifically for use in mobile devices.

The i.MX range is a family of Freescale Semiconductor proprietary microcontrollers for multimedia applications based on the ARM architecture and focused on low-power consumption. The i.MX application processors are SoCs (System-on-Chip) that integrate many processing units into one die, like the main CPU, a video processing unit, and a graphics processing unit for instance. The i.MX products are qualified for automotive, industrial, and consumer markets. Most of them are guaranteed for a production lifetime of 10 to 15 years.
Devices that use i.MX processors include Ford Sync, the Amazon Kindle and Kobo eReader series of e-readers until 2021, Zune, Sony Reader, Onyx Boox readers/tablets, SolidRun SOM's, Purism's Librem 5, some Logitech Harmony remote controls and Squeezebox radio and some Toshiba Gigabeat MP4 players. The i.MX range was previously known as the "DragonBall MX" family, the fifth generation of DragonBall microcontrollers. i.MX originally stood for "innovative Multimedia eXtension".

<span class="mw-page-title-main">BeagleBoard</span> Single board computer

The BeagleBoard is a low-power open-source single-board computer produced by Texas Instruments in association with Digi-Key and Newark element14. The BeagleBoard was also designed with open source software development in mind, and as a way of demonstrating the Texas Instrument's OMAP3530 system-on-a-chip. The board was developed by a small team of engineers as an educational board that could be used in colleges around the world to teach open source hardware and software capabilities. It is also sold to the public under the Creative Commons share-alike license. The board was designed using Cadence OrCAD for schematics and Cadence Allegro for PCB manufacturing; no simulation software was used.

<span class="mw-page-title-main">ARM Cortex-A9</span> 32-bit multicore processor developed by SR1

The ARM Cortex-A9 MPCore is a 32-bit multi-core processor that provides up to 4 cache-coherent cores, each implementing the ARM v7 architecture instruction set. It was introduced in 2007.

The IGEPv2 board is a low-power, fanless single-board computer based on the OMAP 3 series of ARM-compatible processors. It is developed and produced by Spanish corporation ISEE and is the second IGEP platform in the series. The IGEPv2 is open hardware, licensed under a Creative Commons Attribution-Non Commercial-ShareAlike 3.0 unported license.

<span class="mw-page-title-main">Motorola Defy</span> Android smartphone developed by Motorola Mobility

The Motorola Defy (A8210/MB525) is an Android-based smartphone from Motorola. It filled a niche market segment, by being one of the few small, IP67 rated smartphones available at the time of its late 2010 release; it is water resistant, dust resistant, and has an impact-resistant screen. An updated version of the original model, Defy+ (MB526) was released in 2011. Other variants were also released before a revival of the Defy name in 2021.

<span class="mw-page-title-main">PandaBoard</span> Single board computer

The PandaBoard was a low-power single-board computer development platform based on the Texas Instruments OMAP4430 system on a chip (SoC). The board has been available to the public at the subsidized price of US$174 since 27 October 2010. It is a community supported development platform.

<span class="mw-page-title-main">ARM Cortex-A15</span> Family of microprocessor cores with ARM microarchitecture

The ARM Cortex-A15 MPCore is a 32-bit processor core licensed by ARM Holdings implementing the ARMv7-A architecture. It is a multicore processor with out-of-order superscalar pipeline running at up to 2.5 GHz.

<span class="mw-page-title-main">Samsung Galaxy S II</span> 2011 Android smartphone by Samsung

The Samsung Galaxy S II is a touchscreen-enabled, slate-format Android smartphone designed, developed, and marketed by Samsung Electronics, as the second smartphone of the Samsung Galaxy S series. It has additional software features, expanded hardware, and a redesigned physique compared to its predecessor, the Samsung Galaxy S. The S II was launched with Android 2.3.4 "Gingerbread", with updates to Android 4.1.2 "Jelly Bean".

<span class="mw-page-title-main">Exynos</span> Family of ARM based system-on-a-chips made by Samsung

The Samsung Exynos, formerly Hummingbird (Korean: 엑시노스), is a series of ARM-based system-on-chips developed by Samsung Electronics' System LSI division and manufactured by Samsung Foundry. It is a continuation of Samsung's earlier S3C, S5L and S5P line of SoCs.

<span class="mw-page-title-main">ARM Cortex-A7</span> 2011 computer microprocessor core

The ARM Cortex-A7 MPCore is a 32-bit microprocessor core licensed by ARM Holdings implementing the ARMv7-A architecture announced in 2011.

<span class="mw-page-title-main">Sitara ARM processor</span> Computer processor developed by Texas Instruments

The Sitara Arm Processor family, developed by Texas Instruments, features ARM9, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A15, and ARM Cortex-A53 application cores, C66x DSP cores, imaging and multimedia acceleration cores, industrial communication IP, and other technology to serve a broad base of applications. Development using Sitara processors is supported by the open source Beagle community as well as Texas Instruments' open source development community.

<span class="mw-page-title-main">Amlogic</span> American fabless semiconductor company

Amlogic Inc. is a Fabless semiconductor company that was founded on March 14, 1995, in Santa Clara, California and is predominantly focused on designing and selling system on a chip integrated circuits. Like most Fabless companies in the industry, the company outsources the actual manufacturing of its chips to third-party independent chip manufacturers such as TSMC. Its main target applications as of 2021 are entertainment devices such as Android TV-based devices and IPTV/OTT set-top boxes, media dongles, smart TVs and tablets. It has offices in Shanghai, Shenzhen, Beijing, Xi'an, Chengdu, Hefei, Nanjing, Qingdao, Taipei, Hong Kong, Seoul, Mumbai, London, Munich, Indianapolis, Milan, Novi Sad and Santa Clara, California.

References

  1. "STMicroelectronics and Texas Instruments Team Up to Establish an Open Standard for Wireless Applications". Dallas and Geneva: STMicroelectronics. 2002-12-12. Archived from the original on 2003-02-12. Retrieved 2012-12-24.
  2. "Texas Instruments admits defeat, moves focus away from smartphone processors". 26 September 2012.
  3. "UPDATE 3-Texas Instruments eyes shift away from wireless". Reuters. 25 September 2012.
  4. Fingas, Jon (2012-11-14). "Texas Instruments to cut 1,700 jobs as part of its shift away from mobile". Engadget.com. Retrieved 2013-07-10.
  5. "OMAP™ 2 Processors - OMAP2420". www.ti.com. Archived from the original on 2011-11-29. Retrieved 2017-07-02.
  6. "OMAP™ Mobile Processors : OMAP™ 3 Processors". Texas Instruments.
  7. Angel, Jonathan (23 February 2009). "TI die-shrinks OMAP3". linuxdevices.com. Archived from the original on 2012-07-11.
  8. "DaVinci Digital Video Processor - TMS320DM37x SOC - DM3730". Texas Instruments.
  9. "Motorola FLIPSIDE MB508". GSMArena. Retrieved 2013-06-28.
  10. "BORQS". BORQS. Retrieved 2013-07-10.
  11. "OMAP 3611/3621 TI eBook plarform, including DSP reference" (PDF).
  12. "Alico FSDK 0311A" (PDF). www.alicosystems.com. Archived from the original (PDF) on May 16, 2011.
  13. "Embest DevKit8000 OMAP3530 Evaluation Kit". Embest. Archived from the original on 2012-02-28. Retrieved 17 Feb 2012.
  14. "OpenSourceMID K7 MID". OpenSourceMID. Retrieved 17 Feb 2012.
  15. "TI OMAP3530 ARM Cortex A8 System on Module". Phytec America, LLC. Archived from the original on 9 November 2011. Retrieved 17 Feb 2012.
  16. "CIP312 TI DM3730/OMAP3530 Computer in Package". TianyeIT LTD. Retrieved 17 Feb 2012.
  17. "Odyssey specs from Bookeen's website".
  18. "OMAP36XX ZIP file" (PDF (in ZIP file)). Texas Instruments.
  19. "LG LU3000 Specifications". Letsgomobile.org. Retrieved 2012-08-04.
  20. "Computer module taps 1.5GHz, dual-core OMAP4460 SoCv". LinuxDevices.com. Archived from the original on 2012-09-03.
  21. 1 2 "The Ducati subsystem – Introcution".
  22. "OMAP4430 ZIP file".
  23. "OMAP4460 Public TRM vE (pdf)".
  24. "Texas Instruments announces multi-core, 1.8GHz OMAP4470 ARM processor for Windows 8". Engadget. 2 June 2011. Retrieved 2012-10-28.
  25. "I nuovi Google Glass utilizzeranno un SoC Intel". 5 December 2014.
  26. "NVIDIA's Tegra 2 Take Two: More Architectural Details and Design Wins". AnandTech. Retrieved 2012-10-28.
  27. "OMAP44xx series in TI Web site". Focus.ti.com. Retrieved 2012-10-28.
  28. "TI speeds up its OMAP 4 for 3D video". Archived from the original on 2012-09-11.
  29. "TI's OMAP 4 bringing 1080p support to smartphones and MIDs". Engadget.com. 17 February 2009. Retrieved 2012-10-28.
  30. "Texas Instruments introduces ARM-based OMAP 4 SOC, Blaze development platform". Engadget.com. 15 February 2010. Retrieved 2012-10-28.
  31. "TI Announces OMAP4470 and Specs: PowerVR SGX544, 1.8 GHz Dual Core Cortex-A9". AnandTech. Retrieved 2012-10-28.
  32. 1 2 "Texas Instruments OMAP4470 CGPU Information". Vivantecorp.com. Archived from the original on 2013-02-17. Retrieved 2012-10-28.
  33. Skipworth, Hunter (23 March 2011). "Blackberry confirms PlayBook specs and launch date". The Telegraph . Telegraph Media Group . Retrieved 17 Feb 2012.
  34. "Droid Razr by Motorola, XT912". MotoDev. Motorola Mobility. Archived from the original on 2012-02-08. Retrieved 17 Feb 2012.
  35. "OMAP4460/OMAP4430: OMAP 4 Cortex A9 System on Module". Phytec America, LLC. Retrieved 17 Feb 2012.
  36. "CIP Ti OMAP4430/4460 Computer In Package". STACKOFTUTS. 17 February 2022. Retrieved 17 Feb 2022.
  37. "SmartQ Ten3 (T15)" . Retrieved 13 September 2012.
  38. Lee, Jay. "Google+ Post by Jay Lee" . Retrieved 26 April 2013.
  39. "Huawei Ascend D1 visits FCC". PhoneArena, FCC. 17 May 2012. Retrieved 7 July 2012.
  40. "Huawei Ascend P1 visits the FCC". PhoneArena, FCC. 26 May 2012. Retrieved 7 July 2012.
  41. "PandaBoard ES Technical Specs". PandaBoard. Retrieved 17 Feb 2012.
  42. "VAR-SOM-OM44 CPU: TI OMAP4460". Variscite. Retrieved 17 Feb 2012.
  43. Klug, Brian (27 Jun 2012). "Google Announces Nexus Q - Music and Video Streamer for Google Play and YouTube CPU: TI OMAP4460". AnandTech. Retrieved 27 Jun 2012.
  44. "Not Just a Faster Horse: TI's OMAP 5 Platform Transforms the Concept of 'Mobile'". Texas Instruments. 7 February 2011. Archived from the original on 11 February 2011. Retrieved 2011-02-09. The OMAP 5 processor leverages two ARM Cortex-A15 MPCores [...] [It] also includes two ARM Cortex-M4 processors [...]
  45. "OMAP5430". Texas Instruments.
  46. "Texas Instruments' OMAP 5 platform takes center stage" (Press release). Texas Instruments. Feb 27, 2012. Retrieved 2012-04-27.
  47. 1 2 "OMAP 5 mobile applications platform" (PDF). Texas Instruments . Retrieved 2012-04-27.
  48. "V-R7000 / V-R7100 Specifications". Casio Computer Co., Ltd. Retrieved 2018-01-11.
  49. "ISEE - IGEPv5 OMAP5432". Archived from the original on 2013-10-22.
  50. "Texas Instruments OMAP5432 EVM / Development Board". CNX-Software. 21 May 2013. Retrieved 2013-07-09.
  51. "OMAP Factsheet" (PDF). Texas Instruments. Retrieved 1 October 2020.
  52. "TI Wireless solutions Guide 2008" (PDF). Texas Instruments. Retrieved 1 October 2020.