ARM Cortex-A12

Last updated

ARM Cortex-A12
General information
Designed by ARM Holdings
Cache
L1 cache 32–64 KiB I, 32 KiB D
L2 cache256 KiB–8 MiB (configurable with L2 cache controller)
Architecture and classification
Instruction set ARMv7-A
Physical specifications
Cores
  • 1–4
Products, models, variants
Product code name(s)
History
Predecessor(s) ARM Cortex-A9
Successor(s) ARM Cortex-A17

The ARM Cortex-A12 is a 32-bit processor core licensed by ARM Holdings implementing the ARMv7-A architecture. It provides up to 4 cache-coherent cores. The Cortex-A12 is a successor to the Cortex-A9. [2]

Contents

ARM renamed A12 as a variant of Cortex-A17 since the second revision of the core in early 2014, because they were indistinguishable in performance. [3] [4]

Overview

ARM claims that the Cortex-A12 core is 40 percent more powerful than the Cortex-A9 core. [5] New features not found in the Cortex-A9 include hardware virtualization and 40-bit Large Physical Address Extensions (LPAE) addressing. It was announced as supporting big.LITTLE, [6] however shortly afterwards the ARM Cortex-A17 was announced as the upgraded version with that capability. [7]

Key features of the Cortex-A12 core are: [8]

See also

Related Research Articles

ARM is a family of RISC instruction set architectures for computer processors, configured for various environments. Arm Ltd. develops the architectures and licenses them to other companies, who design their own products that implement one or more of those architectures, including system on a chip (SoC) and system on module (SOM) designs, that incorporate different components such as memory, interfaces, and radios. It also designs cores that implement these instruction set architectures and licenses these designs to many companies that incorporate those core designs into their own products.

ARM9 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings for microcontroller use. The ARM9 core family consists of ARM9TDMI, ARM940T, ARM9E-S, ARM966E-S, ARM920T, ARM922T, ARM946E-S, ARM9EJ-S, ARM926EJ-S, ARM968E-S, ARM996HS. Since ARM9 cores were released from 1998 to 2006, they are no longer recommended for new IC designs, instead ARM Cortex-A, ARM Cortex-M, ARM Cortex-R cores are preferred.

<span class="mw-page-title-main">Nehalem (microarchitecture)</span> CPU microarchitecture by Intel

Nehalem is the codename for Intel's 45 nm microarchitecture released in November 2008. It was used in the first-generation of the Intel Core i5 and i7 processors, and succeeds the older Core microarchitecture used on Core 2 processors. The term "Nehalem" comes from the Nehalem River.

ARM11 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings. The ARM11 core family consists of ARM1136J(F)-S, ARM1156T2(F)-S, ARM1176JZ(F)-S, and ARM11MPCore. Since ARM11 cores were released from 2002 to 2005, they are no longer recommended for new IC designs, instead ARM Cortex-A and ARM Cortex-R cores are preferred.

An Advanced Encryption Standard instruction set is now integrated into many processors. The purpose of the instruction set is to improve the speed and security of applications performing encryption and decryption using the Advanced Encryption Standard (AES).

<span class="mw-page-title-main">ARM Cortex-A15</span> Family of microprocessor cores with ARM microarchitecture

The ARM Cortex-A15 MPCore is a 32-bit processor core licensed by ARM Holdings implementing the ARMv7-A architecture. It is a multicore processor with out-of-order superscalar pipeline running at up to 2.5 GHz.

<span class="mw-page-title-main">ARM Cortex-M</span> Group of 32-bit RISC processor cores

The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by ARM Limited. These cores are optimized for low-cost and energy-efficient integrated circuits, which have been embedded in tens of billions of consumer devices. Though they are most often the main component of microcontroller chips, sometimes they are embedded inside other types of chips too. The Cortex-M family consists of Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23, Cortex-M33, Cortex-M35P, Cortex-M55, Cortex-M85. A floating-point unit (FPU) option is available for Cortex-M4 / M7 / M33 / M35P / M55 / M85 cores, and when included in the silicon these cores are sometimes known as "Cortex-MxF", where 'x' is the core variant.

The ARM Cortex-A is a group of 32-bit and 64-bit RISC ARM processor cores licensed by Arm Holdings. The cores are intended for application use. The group consists of 32-bit only cores: ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, ARM Cortex-A9, ARM Cortex-A12, ARM Cortex-A15, ARM Cortex-A17 MPCore, and ARM Cortex-A32, 32/64-bit mixed operation cores: ARM Cortex-A35, ARM Cortex-A53, ARM Cortex-A55, ARM Cortex-A57, ARM Cortex-A72, ARM Cortex-A73, ARM Cortex-A75, ARM Cortex-A76, ARM Cortex-A77, ARM Cortex-A78, ARM Cortex-A710, and ARM Cortex-A510 Refresh, and 64-bit only cores: ARM Cortex-A34, ARM Cortex-A65, ARM Cortex-A510 (2021), ARM Cortex-A715, ARM Cortex-A520, and ARM Cortex-A720.

<span class="mw-page-title-main">ARM Cortex-R</span> Family of microprocessor cores with ARM microarchitecture

The ARM Cortex-R is a family of 32-bit and 64-bit RISC ARM processor cores licensed by Arm Holdings. The cores are optimized for hard real-time and safety-critical applications. Cores in this family implement the ARM Real-time (R) profile, which is one of three architecture profiles, the other two being the Application (A) profile implemented by the Cortex-A family and the Microcontroller (M) profile implemented by the Cortex-M family. The ARM Cortex-R family of microprocessors currently consists of ARM Cortex-R4(F), ARM Cortex-R5(F), ARM Cortex-R7(F), ARM Cortex-R8(F), ARM Cortex-R52(F), and ARM Cortex-R82(F).

<span class="mw-page-title-main">ARM Cortex-A7</span> 2011 computer microprocessor core

The ARM Cortex-A7 MPCore is a 32-bit microprocessor core licensed by ARM Holdings implementing the ARMv7-A architecture announced in 2011.

Scorpion is a central processing unit (CPU) core designed by Qualcomm for use in their Snapdragon mobile systems on chips (SoCs). It was released in 2008. It was designed in-house, but has many architectural similarities with the ARM Cortex-A8 and Cortex-A9 CPU cores.

Qualcomm Krait is an ARM-based central processing unit included in the Snapdragon S4 and earlier models of Snapdragon 400/600/800 series SoCs. It was introduced in 2012 as a successor to the Scorpion CPU and although it has architectural similarities, Krait is not a Cortex-A15 core, but it was designed in-house. In 2015, Krait was superseded by the 64-bit Kryo architecture, first introduced in Snapdragon 820 SoC.

<span class="mw-page-title-main">AArch64</span> 64-bit extension of the ARM architecture

AArch64 or ARM64 is the 64-bit extension of the ARM architecture family.

The ARM Cortex-A57 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings. The Cortex-A57 is an out-of-order superscalar pipeline. It is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores into one die constituting a system on a chip (SoC).

The ARM Cortex-A17 is a 32-bit processor core implementing the ARMv7-A architecture, licensed by ARM Holdings. Providing up to four cache-coherent cores, it serves as the successor to the Cortex-A9 and replaces the previous ARM Cortex-A12 specifications. ARM claims that the Cortex-A17 core provides 60% higher performance than the Cortex-A9 core, while reducing the power consumption by 20% under the same workload.

<span class="mw-page-title-main">ARM Cortex-A53</span> Microarchitecture implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings

The ARM Cortex-A53 is one of the first two central processing units implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Cambridge design centre, along with the Cortex-A57. The Cortex-A53 is a 2-wide decode superscalar processor, capable of dual-issuing some instructions. It was announced October 30, 2012 and is marketed by ARM as either a stand-alone, more energy-efficient alternative to the more powerful Cortex-A57 microarchitecture, or to be used alongside a more powerful microarchitecture in a big.LITTLE configuration. It is available as an IP core to licensees, like other ARM intellectual property and processor designs.

K12 was to be AMD's first custom microarchitecture based on the ARMv8-A (AArch64) instruction set with a planned release in 2017. Its predecessor, the Opteron A1100 series, also ARMv8-A, used ARM Cortex-A57 cores. As of 2023 the product has officially been canceled.

This is a comparison of processors based on the ARM family of instruction sets designed by ARM Holdings and 3rd parties, sorted by version of the ARM instruction set, release and name.

The ARM Cortex-A72 is a central processing unit implementing the ARMv8-A 64-bit instruction set designed by ARM Holdings' Austin design centre. The Cortex-A72 is a 3-way decode out-of-order superscalar pipeline. It is available as SIP core to licensees, and its design makes it suitable for integration with other SIP cores into one die constituting a system on a chip (SoC). The Cortex-A72 was announced in 2015 to serve as the successor of the Cortex-A57, and was designed to use 20% less power or offer 90% greater performance.

References

  1. "What core follows ARM's A12?". 15 January 2014.
  2. "ARM Cortex-A12 Processor". Arm.com.
  3. Anand Lal Shimpi (11 February 2014). "ARM Cortex A17: An Evolved Cortex A12 for the Mainstream in 2015". AnandTech. Retrieved 30 September 2014.
  4. Stefan Rosinger (1 October 2014). "ARM Cortex-A17 / Cortex-A12 processor update". ARM Connected Community.
  5. "ARM launches new Cortex-A12 processor with new Mali-T622 GPU and Mali-V500 video processing". Archived from the original on 26 August 2013. Retrieved 3 June 2013.
  6. ARM Targets 580 Million Mid-Range Mobile Devices with New Suite of IP
  7. Anand Lal Shimpi (11 February 2014). "ARM Cortex A17: An Evolved Cortex A12 for the Mainstream in 2015". Anandtech.
  8. "Cortex-A12 Processor Specifications". ARM.
ARM Holdings